Fu Rui-Yan, Bongers Roger S, van Swam Iris I, Chen Jian, Molenaar Douwe, Kleerebezem Michiel, Hugenholtz Jeroen, Li Yin
The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Southern Yangtze University, Wuxi 214036, People's Republic of China.
Metab Eng. 2006 Nov;8(6):662-71. doi: 10.1016/j.ymben.2006.07.004. Epub 2006 Aug 4.
This study describes how a metabolic engineering approach can be used to improve bacterial stress resistance. Some Lactococcus lactis strains are capable of taking up glutathione, and the imported glutathione protects this organism against H(2)O(2)-induced oxidative stress. L. lactis subsp. cremoris NZ9000, a model organism of this species that is widely used in the study of metabolic engineering, can neither synthesize nor take up glutathione. The study described here aimed to improve the oxidative-stress resistance of strain NZ9000 by introducing a glutathione biosynthetic capability. We show that the glutathione produced by strain NZ9000 conferred stronger resistance on the host following exposure to H(2)O(2) (150 mM) and a superoxide generator, menadione (30 microM). To explore whether glutathione can complement the existing oxidative-stress defense systems, we constructed a superoxide dismutase deficient mutant of strain NZ9000, designated as NZ4504, which is more sensitive to oxidative stress, and introduced the glutathione biosynthetic capability into this strain. Glutathione produced by strain NZ4504(pNZ3203) significantly shortens the lag phase of the host when grown aerobically, especially in the presence of menadione. In addition, cells of NZ4504(pNZ3203) capable of producing glutathione restored the resistance of the host to H(2)O(2)-induced oxidative stress, back to the wild-type level. We conclude that the resistance of L. lactis subsp. cremoris NZ9000 to oxidative stress can be increased in engineered cells with glutathione producing capability.
本研究描述了如何利用代谢工程方法来提高细菌的抗逆性。一些乳酸乳球菌菌株能够摄取谷胱甘肽,导入的谷胱甘肽可保护该生物体免受H₂O₂诱导的氧化应激。乳酸乳球菌乳脂亚种NZ9000是该物种的一种模式生物,广泛用于代谢工程研究,它既不能合成也不能摄取谷胱甘肽。本文所述研究旨在通过引入谷胱甘肽生物合成能力来提高NZ9000菌株的抗氧化应激能力。我们发现,NZ9000菌株产生的谷胱甘肽在暴露于H₂O₂(150 mM)和超氧化物生成剂甲萘醌(30 μM)后,赋予宿主更强的抗性。为了探究谷胱甘肽是否能补充现有的氧化应激防御系统,我们构建了NZ9000菌株的超氧化物歧化酶缺陷突变体,命名为NZ4504,它对氧化应激更敏感,并将谷胱甘肽生物合成能力引入该菌株。NZ4504(pNZ3203)菌株产生的谷胱甘肽在需氧生长时,尤其是在有甲萘醌存在的情况下,能显著缩短宿主的延滞期。此外,能够产生谷胱甘肽的NZ4504(pNZ3203)细胞将宿主对H₂O₂诱导的氧化应激的抗性恢复到了野生型水平。我们得出结论,具有谷胱甘肽产生能力的工程化细胞可提高乳酸乳球菌乳脂亚种NZ9000对氧化应激的抗性。