Suppr超能文献

谷胱甘肽可保护乳酸乳球菌免受氧化应激。

Glutathione protects Lactococcus lactis against oxidative stress.

作者信息

Li Yin, Hugenholtz Jeroen, Abee Tjakko, Molenaar Douwe

机构信息

Wageningen Centre for Food Sciences, NIZO Food Research, 6710 BA Ede, The Netherlands.

出版信息

Appl Environ Microbiol. 2003 Oct;69(10):5739-45. doi: 10.1128/AEM.69.10.5739-5745.2003.

Abstract

Glutathione was found in several dairy Lactococcus lactis strains grown in M17 medium. None of these strains was able to synthesize glutathione. In chemically defined medium, L. lactis subsp. cremoris strain SK11 was able to accumulate up to approximately 60 mM glutathione when this compound was added to the medium. Stationary-phase cells of strain SK11 grown in chemically defined medium supplemented with glutathione showed significantly increased resistance (up to fivefold increased resistance) to treatment with H2O2 compared to the resistance of cells without intracellular glutathione. The resistance to H2O2 treatment was found to be dependent on the accumulation of glutathione in 16 strains of L. lactis tested. We propose that by taking up glutathione, L. lactis might activate a glutathione-glutathione peroxidase-glutathione reductase system in stationary-phase cells, which catalyzes the reduction of H2O2. Glutathione reductase, which reduces oxidized glutathione, was detectable in most strains of L. lactis, but the activities of different strains were very variable. In general, the glutathione reductase activities of L. lactis subsp. lactis are higher than those of L. lactis subsp. cremoris, and the activities were much higher when strains were grown aerobically. In addition, glutathione peroxidase is detectable in strain SK11, and the level was fivefold greater when the organism was grown aerobically than when the organism was grown anaerobically. Therefore, the presence of glutathione in L. lactis could result in greater stability under storage conditions and quicker growth upon inoculation, two important attributes of successful starter cultures.

摘要

在M17培养基中生长的几种乳酸乳球菌菌株中发现了谷胱甘肽。这些菌株均不能合成谷胱甘肽。在化学成分确定的培养基中,当向培养基中添加该化合物时,乳酸乳球菌乳脂亚种SK11菌株能够积累高达约60 mM的谷胱甘肽。与没有细胞内谷胱甘肽的细胞相比,在添加了谷胱甘肽的化学成分确定的培养基中生长的SK11菌株的稳定期细胞对H2O2处理的抗性显著增加(抗性增加高达五倍)。在所测试的16株乳酸乳球菌中,发现对H2O2处理的抗性取决于谷胱甘肽的积累。我们提出,通过摄取谷胱甘肽,乳酸乳球菌可能会激活稳定期细胞中的谷胱甘肽-谷胱甘肽过氧化物酶-谷胱甘肽还原酶系统,该系统催化H2O2的还原。在大多数乳酸乳球菌菌株中都可检测到还原氧化型谷胱甘肽的谷胱甘肽还原酶,但不同菌株的活性差异很大。一般来说,乳酸乳球菌乳酸亚种的谷胱甘肽还原酶活性高于乳酸乳球菌乳脂亚种,并且当菌株在有氧条件下生长时,活性要高得多。此外,在SK11菌株中可检测到谷胱甘肽过氧化物酶,当该生物体在有氧条件下生长时,其水平比在厌氧条件下生长时高五倍。因此,乳酸乳球菌中谷胱甘肽的存在可能导致在储存条件下具有更高的稳定性以及接种后更快的生长,这是成功的发酵剂培养物的两个重要特性。

相似文献

1
Glutathione protects Lactococcus lactis against oxidative stress.
Appl Environ Microbiol. 2003 Oct;69(10):5739-45. doi: 10.1128/AEM.69.10.5739-5745.2003.
2
Glutathione protects Lactococcus lactis against acid stress.
Appl Environ Microbiol. 2007 Aug;73(16):5268-75. doi: 10.1128/AEM.02787-06. Epub 2007 Jun 29.
4
Proteomic analyses to reveal the protective role of glutathione in resistance of Lactococcus lactis to osmotic stress.
Appl Environ Microbiol. 2010 May;76(10):3177-86. doi: 10.1128/AEM.02942-09. Epub 2010 Mar 26.
6
[Glutathione plays an anti-oxidant role in Lactococcus lactis].
Wei Sheng Wu Xue Bao. 2006 Jun;46(3):379-84.
7
Regulatory phenotyping reveals important diversity within the species Lactococcus lactis.
Appl Environ Microbiol. 2009 Sep;75(17):5687-94. doi: 10.1128/AEM.00919-09. Epub 2009 Jul 10.
8
Differentiation of Lactococcus lactis subspecies lactis and subspecies cremoris strains by their adaptive response to stresses.
FEMS Microbiol Lett. 1999 Feb 1;171(1):57-65. doi: 10.1111/j.1574-6968.1999.tb13412.x.
9
Casitone-mediated expression of the prtP and prtM genes in Lactococcus lactis subsp. lactis BGIS29.
Arch Microbiol. 2001 Dec;177(1):54-61. doi: 10.1007/s00203-001-0361-7. Epub 2001 Oct 19.
10
Bile resistance in Lactococcus lactis strains varies with cellular fatty acid composition: analysis by using different growth media.
Int J Food Microbiol. 2009 May 31;131(2-3):183-8. doi: 10.1016/j.ijfoodmicro.2009.02.021. Epub 2009 Mar 3.

引用本文的文献

3
Understanding the Probiotic Bacterial Responses Against Various Stresses in Food Matrix and Gastrointestinal Tract: A Review.
Probiotics Antimicrob Proteins. 2023 Aug;15(4):1032-1048. doi: 10.1007/s12602-023-10104-3. Epub 2023 Jun 22.
4
Selenite Bioremediation by Food-Grade Probiotic Lactobacillus casei ATCC 393: Insights from Proteomics Analysis.
Microbiol Spectr. 2023 Jun 15;11(3):e0065923. doi: 10.1128/spectrum.00659-23. Epub 2023 May 23.
5
Probiotic properties and proteomics analysis of ethanol-induced Lactococcus lactis subsp. lactis IL1403.
World J Microbiol Biotechnol. 2023 May 15;39(8):197. doi: 10.1007/s11274-023-03627-y.
6
Genomic Analysis Provides New Insights Into Biotechnological and Industrial Potential of M1.
Front Microbiol. 2022 Jun 9;13:923038. doi: 10.3389/fmicb.2022.923038. eCollection 2022.
7
From Rest to Growth: Life Collisions of 135.
Microorganisms. 2022 Feb 18;10(2):465. doi: 10.3390/microorganisms10020465.
8
Glutathione Is Involved in the Reduction of Methylarsenate to Generate Antibiotic Methylarsenite in Enterobacter sp. Strain CZ-1.
Appl Environ Microbiol. 2022 Mar 22;88(6):e0246721. doi: 10.1128/aem.02467-21. Epub 2022 Jan 26.
9
The Effect of Impaired Polyamine Transport on Pneumococcal Transcriptome.
Pathogens. 2021 Oct 14;10(10):1322. doi: 10.3390/pathogens10101322.
10
Deciphering the Probiotic Potential of Bacillus amyloliquefaciens COFCAU_P1 Isolated from the Intestine of Labeo rohita Through In Vitro and Genetic Assessment.
Probiotics Antimicrob Proteins. 2021 Dec;13(6):1572-1584. doi: 10.1007/s12602-021-09788-2. Epub 2021 Apr 26.

本文引用的文献

2
Role of glutathione in the response of Escherichia coli to osmotic stress.
Biochemistry (Mosc). 2001 Sep;66(9):973-8. doi: 10.1023/a:1012361323992.
5
Effects of menadione and hydrogen peroxide on glutathione status in growing Escherichia coli.
Free Radic Biol Med. 2000 Apr 1;28(7):1009-16. doi: 10.1016/s0891-5849(99)00256-7.
6
Protective mechanisms against toxic electrophiles in Escherischia coli.
Trends Microbiol. 1999 Jun;7(6):242-7. doi: 10.1016/s0966-842x(99)01510-3.
7
Reduction of peroxides and dinitrobenzenes by Mycobacterium tuberculosis thioredoxin and thioredoxin reductase.
Arch Biochem Biophys. 1999 Mar 1;363(1):19-26. doi: 10.1006/abbi.1998.1056.
9
Import and metabolism of glutathione by Streptococcus mutans.
J Bacteriol. 1998 Mar;180(6):1454-9. doi: 10.1128/JB.180.6.1454-1459.1998.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验