Suppr超能文献

在一项HIV治疗中断试验(AIEDRP AIN503/ACTG A5217)中,使用两阶段假设检验对具有信息性缺失的生物标志物数据进行稳健分析。

Robust analysis of biomarker data with informative missingness using a two-stage hypothesis test in an HIV treatment interruption trial: AIEDRP AIN503/ACTG A5217.

作者信息

Messer Karen, Vaida Florin, Hogan Christine

机构信息

Division of Biostatistics, University of California, San Diego, CA 92093, United States.

出版信息

Contemp Clin Trials. 2006 Dec;27(6):506-17. doi: 10.1016/j.cct.2006.07.003. Epub 2006 Jul 25.

Abstract

Clinical trial AIN503/A5217 investigates whether a period of early treatment with antiretroviral therapy might lower the viral setpoint in subjects recently infected with HIV-1. We consider two statistical issues. First, even under the null hypothesis control arm subjects are more likely than treatment arm subjects to be missing final outcome data because of disease progression. The analysis must adjust for this missing data, or it may be unacceptably biased. Second, comparing outcomes between treatment and control arms at identical times post-randomization gives different information than comparing outcomes at the same amount of time off-therapy, as measured post-randomization. This may make interpretation of results problematic. We formulate the null hypothesis of the study as exchangeability under a time-shift between arms, which we call "time delay" between the study arms. This captures clinically relevant information, and allows us to formalize a two-stage hypothesis test in which stage one is a comparison between arms at identical times post-randomization, and stage two is a comparison between arms at identical times off-therapy, as measured post-randomization. Importantly, within this framework we can show that the two-stage test can be adjusted for the missing data using a simple worst-rank substitution.

摘要

临床试验AIN503/A5217研究了早期接受抗逆转录病毒治疗一段时间是否可能降低近期感染HIV-1的受试者的病毒载量设定值。我们考虑两个统计学问题。首先,即使在零假设下,由于疾病进展,对照组受试者比治疗组受试者更有可能缺失最终结局数据。分析必须对这些缺失数据进行调整,否则可能会出现不可接受的偏差。其次,在随机分组后相同时间比较治疗组和对照组的结局,与在随机分组后测量的相同停药时间比较结局所提供的信息不同。这可能会使结果的解释出现问题。我们将该研究的零假设设定为两组之间在时间推移下的可交换性,我们将其称为研究组之间的“时间延迟”。这捕捉到了临床相关信息,并使我们能够形式化一个两阶段假设检验,其中第一阶段是在随机分组后相同时间比较两组,第二阶段是在随机分组后测量的相同停药时间比较两组。重要的是,在这个框架内,我们可以证明两阶段检验可以使用简单的最差秩替代法对缺失数据进行调整。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验