Suppr超能文献

多组学分析在人类疾病中的应用。

Applications of multi-omics analysis in human diseases.

作者信息

Chen Chongyang, Wang Jing, Pan Donghui, Wang Xinyu, Xu Yuping, Yan Junjie, Wang Lizhen, Yang Xifei, Yang Min, Liu Gong-Ping

机构信息

Key Laboratory of Nuclear Medicine Ministry of Health Jiangsu Key Laboratory of Molecular Nuclear Medicine Jiangsu Institute of Nuclear Medicine Wuxi China.

Co-innovation Center of Neurodegeneration Nantong University Nantong China.

出版信息

MedComm (2020). 2023 Jul 31;4(4):e315. doi: 10.1002/mco2.315. eCollection 2023 Aug.

Abstract

Multi-omics usually refers to the crossover application of multiple high-throughput screening technologies represented by genomics, transcriptomics, single-cell transcriptomics, proteomics and metabolomics, spatial transcriptomics, and so on, which play a great role in promoting the study of human diseases. Most of the current reviews focus on describing the development of multi-omics technologies, data integration, and application to a particular disease; however, few of them provide a comprehensive and systematic introduction of multi-omics. This review outlines the existing technical categories of multi-omics, cautions for experimental design, focuses on the integrated analysis methods of multi-omics, especially the approach of machine learning and deep learning in multi-omics data integration and the corresponding tools, and the application of multi-omics in medical researches (e.g., cancer, neurodegenerative diseases, aging, and drug target discovery) as well as the corresponding open-source analysis tools and databases, and finally, discusses the challenges and future directions of multi-omics integration and application in precision medicine. With the development of high-throughput technologies and data integration algorithms, as important directions of multi-omics for future disease research, single-cell multi-omics and spatial multi-omics also provided a detailed introduction. This review will provide important guidance for researchers, especially who are just entering into multi-omics medical research.

摘要

多组学通常是指以基因组学、转录组学、单细胞转录组学、蛋白质组学、代谢组学、空间转录组学等为代表的多种高通量筛选技术的交叉应用,这些技术在推动人类疾病研究方面发挥着重要作用。目前的大多数综述都集中在描述多组学技术的发展、数据整合以及在特定疾病中的应用;然而,其中很少有对多组学进行全面系统介绍的。本综述概述了多组学现有的技术类别、实验设计注意事项,重点介绍了多组学的综合分析方法,特别是机器学习和深度学习在多组学数据整合中的方法及相应工具,以及多组学在医学研究(如癌症、神经退行性疾病、衰老和药物靶点发现)中的应用以及相应的开源分析工具和数据库,最后,讨论了多组学整合及在精准医学中的应用所面临的挑战和未来方向。随着高通量技术和数据整合算法的发展,作为多组学未来疾病研究的重要方向,单细胞多组学和空间多组学也进行了详细介绍。本综述将为研究人员,特别是刚进入多组学医学研究领域的人员提供重要指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f522/10390758/1dba7572020b/MCO2-4-e315-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验