Suppr超能文献

钙调蛋白与皮层肌动蛋白结合蛋白之间的直接相互作用。

Direct interaction between caldesmon and cortactin.

作者信息

Huang Renjian, Cao Gong-Jie, Guo Hongqiu, Kordowska Jolanta, Albert Wang C-L

机构信息

Boston Biomedical Research Institute, 64 Grove Street, Watertown, MA 02472, USA.

出版信息

Arch Biochem Biophys. 2006 Dec 15;456(2):175-82. doi: 10.1016/j.abb.2006.07.018. Epub 2006 Aug 23.

Abstract

Actin polymerization and depolymerization plays a central role in controlling a wide spectrum of cellular processes. There are many actin-binding proteins in eukaryotic cells. Their roles in the remodeling of the actin architecture and whether they work cooperatively await further study. Caldesmon (CaD) is an actin-binding protein present in nearly all mammalian cells. Cortactin is another actin-binding protein found mainly in the cell cortex. There have been no reports suggesting that CaD and cortactin interact with each other or work as partners. Here, we present evidence that CaD binds cortactin directly by overlay, pull-down assays, ELISA, and by column chromatography. The interaction involves the N-terminal region of cortactin and the C-terminal region of CaD, and appears to be enhanced by divalent metal ions. Cortactin competes with both full-length CaD and its C-terminal fragment for actin binding. Binding of cortactin partially alleviates the inhibitory effect of CaD on the actomyosin ATPase activity. Not only can binding be demonstrated in vitro, the two proteins also co-localize in activated cells at the cortex. Whether such interactions bear any functional significance awaits further investigation.

摘要

肌动蛋白的聚合和解聚在控制广泛的细胞过程中起着核心作用。真核细胞中有许多肌动蛋白结合蛋白。它们在肌动蛋白结构重塑中的作用以及它们是否协同工作尚待进一步研究。钙调蛋白(CaD)是一种几乎存在于所有哺乳动物细胞中的肌动蛋白结合蛋白。皮层肌动蛋白结合蛋白是另一种主要存在于细胞皮层的肌动蛋白结合蛋白。目前尚无报道表明CaD和皮层肌动蛋白结合蛋白相互作用或作为伙伴发挥作用。在此,我们通过覆盖法、下拉试验、酶联免疫吸附测定和柱色谱法提供证据表明CaD直接与皮层肌动蛋白结合蛋白结合。这种相互作用涉及皮层肌动蛋白结合蛋白的N端区域和CaD的C端区域,并且似乎被二价金属离子增强。皮层肌动蛋白结合蛋白与全长CaD及其C端片段竞争肌动蛋白结合。皮层肌动蛋白结合蛋白的结合部分减轻了CaD对肌动球蛋白ATP酶活性的抑制作用。不仅在体外可以证明这种结合,这两种蛋白在活化细胞的皮层中也共定位。这种相互作用是否具有任何功能意义尚待进一步研究。

相似文献

1
Direct interaction between caldesmon and cortactin.
Arch Biochem Biophys. 2006 Dec 15;456(2):175-82. doi: 10.1016/j.abb.2006.07.018. Epub 2006 Aug 23.
5
Phosphorylation of caldesmon during smooth muscle contraction and cell migration or proliferation.
J Biomed Sci. 2006 Mar;13(2):159-72. doi: 10.1007/s11373-005-9060-8.
6
Phosphorylated l-caldesmon is involved in disassembly of actin stress fibers and postmitotic spreading.
Exp Cell Res. 2006 Jan 15;312(2):95-110. doi: 10.1016/j.yexcr.2005.09.021. Epub 2005 Nov 11.
8
The role of caldesmon in the regulation of endothelial cytoskeleton and migration.
J Cell Physiol. 2005 Jun;203(3):520-8. doi: 10.1002/jcp.20244.
9
Phosphorylation of cortactin by p21-activated kinase.
Arch Biochem Biophys. 2006 Dec 15;456(2):183-93. doi: 10.1016/j.abb.2006.06.011. Epub 2006 Jun 30.

引用本文的文献

1
Cortactin function in invadopodia.
Small GTPases. 2020 Jul;11(4):256-270. doi: 10.1080/21541248.2017.1405773. Epub 2017 Dec 31.
3
Myosin IIB deficiency in embryonic fibroblasts affects regulators and core members of the par polarity complex.
Histochem Cell Biol. 2011 Sep;136(3):245-66. doi: 10.1007/s00418-011-0840-0. Epub 2011 Jul 23.
4
Cortactin: a multifunctional regulator of cellular invasiveness.
Cell Adh Migr. 2011 Mar-Apr;5(2):187-98. doi: 10.4161/cam.5.2.14773. Epub 2011 Mar 1.
5
New insights into the regulation of the actin cytoskeleton by tropomyosin.
Int Rev Cell Mol Biol. 2010;281:91-128. doi: 10.1016/S1937-6448(10)81003-2.
6
Differential effects of caldesmon on the intermediate conformational states of polymerizing actin.
J Biol Chem. 2010 Jan 1;285(1):71-9. doi: 10.1074/jbc.M109.065078. Epub 2009 Nov 4.
7
Caldesmon and the regulation of cytoskeletal functions.
Adv Exp Med Biol. 2008;644:250-72. doi: 10.1007/978-0-387-85766-4_19.
9
Caldesmon as a therapeutic target for proliferative vascular diseases.
Mini Rev Med Chem. 2008 Oct;8(12):1209-13. doi: 10.2174/138955708786140981.
10
Cortactin branches out: roles in regulating protrusive actin dynamics.
Cell Motil Cytoskeleton. 2008 Sep;65(9):687-707. doi: 10.1002/cm.20296.

本文引用的文献

1
Phosphorylated l-caldesmon is involved in disassembly of actin stress fibers and postmitotic spreading.
Exp Cell Res. 2006 Jan 15;312(2):95-110. doi: 10.1016/j.yexcr.2005.09.021. Epub 2005 Nov 11.
2
Biophysics: fashionable cells.
Nature. 2005 Jun 30;435(7046):1172-3. doi: 10.1038/4351172a.
3
PAK1 induces podosome formation in A7r5 vascular smooth muscle cells in a PAK-interacting exchange factor-dependent manner.
Am J Physiol Cell Physiol. 2005 Oct;289(4):C898-907. doi: 10.1152/ajpcell.00095.2005. Epub 2005 Jun 8.
4
Cytoskeletal remodelling and slow dynamics in the living cell.
Nat Mater. 2005 Jul;4(7):557-61. doi: 10.1038/nmat1404. Epub 2005 Jun 5.
5
Modes of caldesmon binding to actin: sites of caldesmon contact and modulation of interactions by phosphorylation.
J Biol Chem. 2004 Dec 17;279(51):53387-94. doi: 10.1074/jbc.M410109200. Epub 2004 Sep 27.
6
Cortactin signalling and dynamic actin networks.
Biochem J. 2004 Aug 15;382(Pt 1):13-25. doi: 10.1042/BJ20040737.
7
Caldesmon inhibits Arp2/3-mediated actin nucleation.
J Biol Chem. 2003 May 16;278(20):17937-44. doi: 10.1074/jbc.M208739200. Epub 2003 Mar 11.
10
Novel interaction of cortactin with endothelial cell myosin light chain kinase.
Biochem Biophys Res Commun. 2002 Nov 8;298(4):511-9. doi: 10.1016/s0006-291x(02)02492-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验