Harrison Alistair, Dubois Laura G, St John-Williams Lisa, Moseley M Arthur, Hardison Rachael L, Heimlich Derek R, Stoddard Alexander, Kerschner Joseph E, Justice Sheryl S, Thompson J Will, Mason Kevin M
From the ‡The Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205;
‡‡Duke Proteomics and Metabolomics Core Facility, Duke Center for Genomic and Computational Biology, Duke University, Medical Center, Durham, North Carolina 27710.
Mol Cell Proteomics. 2016 Mar;15(3):1117-38. doi: 10.1074/mcp.M115.052498. Epub 2015 Dec 28.
A thorough understanding of the molecular details of the interactions between bacteria and host are critical to ultimately prevent disease. Recent technological advances allow simultaneous analysis of host and bacterial protein and metabolic profiles from a single small tissue sample to provide insight into pathogenesis. We used the chinchilla model of human otitis media to determine, for the first time, the most expansive delineation of global changes in protein and metabolite profiles during an experimentally induced disease. After 48 h of infection with nontypeable Haemophilus influenzae, middle ear tissue lysates were analyzed by high-resolution quantitative two-dimensional liquid chromatography-tandem mass spectrometry. Dynamic changes in 105 chinchilla proteins and 66 metabolites define the early proteomic and metabolomic signature of otitis media. Our studies indicate that establishment of disease coincides with actin morphogenesis, suppression of inflammatory mediators, and bacterial aerobic respiration. We validated the observed increase in the actin-remodeling complex, Arp2/3, and experimentally showed a role for Arp2/3 in nontypeable Haemophilus influenzae invasion. Direct inhibition of actin branch morphology altered bacterial invasion into host epithelial cells, and is supportive of our efforts to use the information gathered to modify outcomes of disease. The twenty-eight nontypeable Haemophilus influenzae proteins identified participate in carbohydrate and amino acid metabolism, redox homeostasis, and include cell wall-associated metabolic proteins. Quantitative characterization of the molecular signatures of infection will redefine our understanding of host response driven developmental changes during pathogenesis. These data represent the first comprehensive study of host protein and metabolite profiles in vivo in response to infection and show the feasibility of extensive characterization of host protein profiles during disease. Identification of novel protein targets and metabolic biomarkers will advance development of therapeutic and diagnostic options for treatment of disease.
全面了解细菌与宿主之间相互作用的分子细节对于最终预防疾病至关重要。最近的技术进步使得能够从单个小组织样本中同时分析宿主和细菌的蛋白质及代谢谱,从而深入了解发病机制。我们利用人类中耳炎的栗鼠模型,首次确定了实验性诱导疾病期间蛋白质和代谢物谱全球变化的最广泛描述。在用不可分型流感嗜血杆菌感染48小时后,通过高分辨率定量二维液相色谱 - 串联质谱分析中耳组织裂解物。105种栗鼠蛋白质和66种代谢物的动态变化定义了中耳炎的早期蛋白质组学和代谢组学特征。我们的研究表明,疾病的发生与肌动蛋白形态发生、炎症介质的抑制以及细菌有氧呼吸同时发生。我们验证了观察到的肌动蛋白重塑复合体Arp2/3的增加,并通过实验表明Arp2/3在不可分型流感嗜血杆菌入侵中的作用。直接抑制肌动蛋白分支形态改变了细菌对宿主上皮细胞的入侵,这支持了我们利用所收集信息来改变疾病结果的努力。鉴定出的28种不可分型流感嗜血杆菌蛋白质参与碳水化合物和氨基酸代谢、氧化还原稳态,并且包括与细胞壁相关的代谢蛋白。感染分子特征的定量表征将重新定义我们对发病机制中宿主反应驱动的发育变化的理解。这些数据代表了首次对体内宿主蛋白质和代谢物谱对感染的反应进行的全面研究,并显示了在疾病期间广泛表征宿主蛋白质谱的可行性。鉴定新的蛋白质靶点和代谢生物标志物将推动疾病治疗和诊断选择的发展。