Riddle C Nicholas, Baker Stuart N
Department of Anatomy, University of Cambridge, Cambridge, CB2 3DY, UK.
Neuroimage. 2006 Nov 1;33(2):618-27. doi: 10.1016/j.neuroimage.2006.07.027. Epub 2006 Sep 11.
Human sensorimotor EEG shows oscillatory activity at approximately 10 and approximately 20 Hz; the latter frequency is coherent with contralateral EMG. The functional significance of this activity is obscure. A recent study found that corticomuscular coherence varied systematically with increasing lever compliance during a precision grip task. However, since subjects exerted the same force in all conditions, changes in lever compliance also produced changes in how far the digits moved. In this study, we disambiguated whether corticomuscular coherence modulates with object compliance or digit displacement. Subjects performed a precision grip task. Under computer control, the manipulandum could simulate a load of arbitrary compliance (spring constant). Subjects were required to produce a hold-ramp-hold profile of lever displacement, under visual feedback. Subjects first performed tasks with different sized lever movements, against an isotonic load (zero spring constant). Corticomuscular coherence was calculated between left sensorimotor EEG and EMG from five right hand and forearm muscles during the hold phase of the task. Coherence magnitude showed a clear dependence on the extent of digit displacement. In the next task, lever compliance instantaneously changed at the onset of the second hold phase of the task. Corticomuscular coherence modulated not with lever compliance during the analysed hold phase, but with digit displacement during the preceding ramp movement. These data suggest that human corticomuscular coherence is directly related to digit displacement during the preceding movement and not to object compliance. We speculate that corticomuscular coherence may reflect a sensorimotor recalibration, providing updated information about system state following movement.
人类感觉运动脑电图显示在约10赫兹和约20赫兹处有振荡活动;后一频率与对侧肌电图具有相关性。这种活动的功能意义尚不清楚。最近一项研究发现,在精确抓握任务中,皮质-肌肉相关性会随着杠杆顺应性的增加而系统性变化。然而,由于受试者在所有条件下施加的力相同,杠杆顺应性的变化也会导致手指移动距离的变化。在本研究中,我们明确了皮质-肌肉相关性是随物体顺应性还是手指位移而调节。受试者执行精确抓握任务。在计算机控制下,操作手柄可模拟任意顺应性(弹簧常数)的负载。受试者在视觉反馈下被要求产生杠杆位移的保持-斜坡-保持模式。受试者首先在等张负载(零弹簧常数)下进行不同大小杠杆运动的任务。在任务的保持阶段,计算左侧感觉运动脑电图与右手和前臂五块肌肉的肌电图之间的皮质-肌肉相关性。相关性大小显示出明显依赖于手指位移的程度。在下一个任务中,在任务的第二个保持阶段开始时,杠杆顺应性瞬间改变。皮质-肌肉相关性在分析的保持阶段不是随杠杆顺应性调节,而是随前一个斜坡运动期间的手指位移调节。这些数据表明,人类皮质-肌肉相关性与前一个运动期间的手指位移直接相关,而与物体顺应性无关。我们推测,皮质-肌肉相关性可能反映了一种感觉运动重新校准,在运动后提供有关系统状态的更新信息。