Suppr超能文献

玻璃化转变和结构弛豫对晶核形成的影响:理论描述与模型分析

Effects of Glass Transition and Structural Relaxation on Crystal Nucleation: Theoretical Description and Model Analysis.

作者信息

Schmelzer Jürn W P, Tropin Timur V, Fokin Vladimir M, Abyzov Alexander S, Zanotto Edgar D

机构信息

Institut für Physik der Universität Rostock, Albert-Einstein-Strasse 23-25, 18059 Rostock, Germany.

Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, ul. Joliot-Curie 6, 141980 Dubna, Russia.

出版信息

Entropy (Basel). 2020 Sep 29;22(10):1098. doi: 10.3390/e22101098.

Abstract

In the application of classical nucleation theory (CNT) and all other theoretical models of crystallization of liquids and glasses it is always assumed that nucleation proceeds only after the supercooled liquid or the glass have completed structural relaxation processes towards the metastable equilibrium state. Only employing such an assumption, the thermodynamic driving force of crystallization and the surface tension can be determined in the way it is commonly performed. The present paper is devoted to the theoretical treatment of a different situation, when nucleation proceeds concomitantly with structural relaxation. To treat the nucleation kinetics theoretically for such cases, we need adequate expressions for the thermodynamic driving force and the surface tension accounting for the contributions caused by the deviation of the supercooled liquid from metastable equilibrium. In the present paper, such relations are derived. They are expressed via deviations of structural order parameters from their equilibrium values. Relaxation processes result in changes of the structural order parameters with time. As a consequence, the thermodynamic driving force and surface tension, and basic characteristics of crystal nucleation, such as the work of critical cluster formation and the steady-state nucleation rate, also become time-dependent. We show that this scenario may be realized in the vicinity and below the glass transition temperature, and it may occur only if diffusion (controlling nucleation) and viscosity (controlling the alpha-relaxation process) in the liquid decouple. Analytical estimates are illustrated and confirmed by numerical computations for a model system. The theory is successfully applied to the interpretation of experimental data. Several further consequences of this newly developed theoretical treatment are discussed in detail. In line with our previous investigations, we reconfirm that only when the characteristic times of structural relaxation are of similar order of magnitude or longer than the characteristic times of crystal nucleation, elastic stresses evolving in nucleation may significantly affect this process. Advancing the methods of theoretical analysis of elastic stress effects on nucleation, for the first time expressions are derived for the dependence of the surface tension of critical crystallites on elastic stresses. As the result, a comprehensive theoretical description of crystal nucleation accounting appropriately for the effects of deviations of the liquid from the metastable states and of relaxation on crystal nucleation of glass-forming liquids, including the effect of simultaneous stress evolution and stress relaxation on nucleation, is now available. As one of its applications, this theoretical treatment provides a new tool for the explanation of the low-temperature anomaly in nucleation in silicate and polymer glasses (the so-called "breakdown" of CNT at temperatures below the temperature of the maximum steady-state nucleation rate). We show that this anomaly results from much more complex features of crystal nucleation in glasses caused by deviations from metastable equilibrium (resulting in changes of the thermodynamic driving force, the surface tension, and the work of critical cluster formation, in the necessity to account of structural relaxation and stress effects) than assumed so far. If these effects are properly accounted for, then CNT appropriately describes both the initial, the intermediate, and the final states of crystal nucleation.

摘要

在经典成核理论(CNT)以及所有其他关于液体和玻璃结晶的理论模型的应用中,总是假定成核仅在过冷液体或玻璃完成向亚稳平衡态的结构弛豫过程之后才发生。只有采用这样的假定,才能以通常的方式确定结晶的热力学驱动力和表面张力。本文致力于对一种不同情况进行理论处理,即当成核与结构弛豫同时进行时的情况。为了从理论上处理这种情况下的成核动力学,我们需要考虑过冷液体偏离亚稳平衡所产生贡献的热力学驱动力和表面张力的适当表达式。在本文中,推导了这样的关系。它们通过结构序参量相对于其平衡值的偏差来表示。弛豫过程导致结构序参量随时间变化。因此,热力学驱动力和表面张力以及晶体成核的基本特征,如临界团簇形成功和稳态成核速率,也随时间变化。我们表明,这种情况可能在玻璃化转变温度附近及以下实现,并且只有当液体中的扩散(控制成核)和粘度(控制α弛豫过程)解耦时才会发生。通过对一个模型系统的数值计算对解析估计进行了说明和验证。该理论成功地应用于对实验数据的解释。详细讨论了这种新发展的理论处理的几个进一步的结果。与我们之前的研究一致,我们再次确认只有当结构弛豫的特征时间与晶体成核的特征时间具有相似的量级或更长时,成核过程中产生的弹性应力才可能显著影响这个过程。推进了对弹性应力对成核影响的理论分析方法,首次推导了临界微晶表面张力对弹性应力的依赖关系表达式。结果,现在有了一个对晶体成核的全面理论描述,该描述适当地考虑了液体偏离亚稳态以及弛豫对玻璃形成液体晶体成核的影响,包括同时的应力演化和应力弛豫对成核的影响。作为其应用之一,这种理论处理为解释硅酸盐和聚合物玻璃中低温成核异常(即在低于最大稳态成核速率温度下所谓的CNT“失效”)提供了一种新工具。我们表明,这种异常是由玻璃中晶体成核的更复杂特征引起的,这些特征是由偏离亚稳平衡(导致热力学驱动力、表面张力和临界团簇形成功的变化,以及需要考虑结构弛豫和应力效应)导致的,比迄今为止所假设的更为复杂。如果适当地考虑这些效应,那么CNT就能恰当地描述晶体成核的初始、中间和最终状态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ccec/7597199/feed591e4247/entropy-22-01098-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验