Suppr超能文献

通过决策树模型预测多囊卵巢综合征女性的糖代谢受损情况。

Predicting impaired glucose metabolism in women with polycystic ovary syndrome by decision tree modelling.

作者信息

Möhlig M, Flöter A, Spranger J, Weickert M O, Schill T, Schlösser H W, Brabant G, Pfeiffer A F H, Selbig J, Schöfl C

机构信息

Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany.

出版信息

Diabetologia. 2006 Nov;49(11):2572-9. doi: 10.1007/s00125-006-0395-0. Epub 2006 Sep 14.

Abstract

AIMS/HYPOTHESIS: Polycystic ovary syndrome (PCOS) is a risk factor of type 2 diabetes. Screening for impaired glucose metabolism (IGM) with an OGTT has been recommended, but this is relatively time-consuming and inconvenient. Thus, a strategy that could minimise the need for an OGTT would be beneficial.

MATERIALS AND METHODS

Consecutive PCOS patients (n=118) with fasting glucose <6.1 mmol/l were included in the study. Parameters derived from medical history, clinical examination and fasting blood samples were assessed by decision tree modelling for their ability to discriminate women with IGM (2-h OGTT value >/=7.8 mmol/l) from those with NGT.

RESULTS

According to the OGTT results, 93 PCOS women had NGT and 25 had IGM. The best decision tree consisted of HOMA-IR, the proinsulin:insulin ratio, proinsulin, 17-OH progesterone and the ratio of luteinising hormone:follicle-stimulating hormone. This tree identified 69 women with NGT. The remaining 49 women included all women with IGM (100% sensitivity, 74% specificity to detect IGM). Pruning this tree to three levels still identified 53 women with NGT (100% sensitivity, 57% specificity to detect IGM). Restricting the data matrix used for tree modelling to medical history and clinical parameters produced a tree using BMI, waist circumference and WHR. Pruning this tree to two levels separated 27 women with NGT (100% sensitivity, 29% specificity to detect IGM). The validity of both trees was tested by a leave-10%-out cross-validation.

CONCLUSIONS/INTERPRETATION: Decision trees are useful tools for separating PCOS women with NGT from those with IGM. They can be used for stratifying the metabolic screening of PCOS women, whereby the number of OGTTs can be markedly reduced.

摘要

目的/假设:多囊卵巢综合征(PCOS)是2型糖尿病的一个危险因素。已推荐使用口服葡萄糖耐量试验(OGTT)筛查糖代谢受损(IGM),但这相对耗时且不方便。因此,一种能尽量减少OGTT需求的策略将是有益的。

材料与方法

连续纳入空腹血糖<6.1 mmol/l的PCOS患者(n = 118)。通过决策树建模评估从病史、临床检查和空腹血样得出的参数区分IGM(2小时OGTT值≥7.8 mmol/l)女性和正常糖耐量(NGT)女性的能力。

结果

根据OGTT结果,93名PCOS女性为NGT,25名有IGM。最佳决策树由胰岛素抵抗指数(HOMA-IR)、胰岛素原:胰岛素比值、胰岛素原、17-羟孕酮以及黄体生成素:卵泡刺激素比值组成。该树识别出69名NGT女性。其余49名女性包括所有IGM女性(检测IGM的灵敏度为100%,特异度为74%)。将此树修剪至三个层次仍能识别出53名NGT女性(检测IGM的灵敏度为100%,特异度为57%)。将用于树建模的数据矩阵限制为病史和临床参数,得到一棵使用体重指数(BMI)、腰围和腰臀比(WHR)的树。将此树修剪至两个层次可区分出27名NGT女性(检测IGM的灵敏度为100%,特异度为29%)。两棵树的有效性均通过留一法交叉验证进行了检验。

结论/解读:决策树是区分PCOS的NGT女性和IGM女性的有用工具。它们可用于对PCOS女性进行代谢筛查分层,从而可显著减少OGTT的次数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验