Suppr超能文献

一群主要黄病毒交叉反应性抗原位点的隐秘特性。

Cryptic properties of a cluster of dominant flavivirus cross-reactive antigenic sites.

作者信息

Stiasny Karin, Kiermayr Stefan, Holzmann Heidemarie, Heinz Franz X

机构信息

Institute of Virology, Medical University of Vienna, Kinderspitalgasse 15, A-1095 Vienna, Austria.

出版信息

J Virol. 2006 Oct;80(19):9557-68. doi: 10.1128/JVI.00080-06.

Abstract

A number of flaviviruses are important human pathogens, including yellow fever, dengue, West Nile, Japanese encephalitis, and tick-borne encephalitis (TBE) viruses. Infection with or immunization against any of these viruses induces a subset of antibodies that are broadly flavivirus cross-reactive but do not exhibit significant cross-neutralization. Nevertheless, these antibodies can efficiently bind to the major envelope protein (E), which is the main target of neutralizing and protective antibodies because of its receptor-binding and membrane fusion functions. The structural basis for this phenomenon is still unclear. In our studies with TBE virus, we have provided evidence that such cross-reactive antibodies are specific for a cluster of epitopes that are partially occluded in the cage-like assembly of E proteins at the surfaces of infectious virions and involve-but are not restricted to-amino acids of the highly conserved internal fusion peptide loop. Virus disintegration leads to increased accessibility of these epitopes, allowing the cross-reactive antibodies to bind with strongly increased avidity. The cryptic properties of these sites in the context of infectious virions can thus provide an explanation for the observed lack of efficient neutralizing activity of broadly cross-reactive antibodies, despite their specificity for a functionally important structural element in the E protein.

摘要

许多黄病毒是重要的人类病原体,包括黄热病病毒、登革病毒、西尼罗河病毒、日本脑炎病毒和蜱传脑炎(TBE)病毒。感染这些病毒中的任何一种或针对其进行免疫接种都会诱导产生一部分抗体,这些抗体具有广泛的黄病毒交叉反应性,但不表现出显著的交叉中和作用。然而,这些抗体能够有效地结合主要包膜蛋白(E),由于其受体结合和膜融合功能,E蛋白是中和性抗体和保护性抗体的主要靶点。这种现象的结构基础仍不清楚。在我们对TBE病毒的研究中,我们提供了证据表明,此类交叉反应性抗体对一组表位具有特异性,这些表位在感染性病毒粒子表面的E蛋白笼状组装中部分被遮蔽,并且涉及但不限于高度保守的内部融合肽环的氨基酸。病毒解体导致这些表位的可及性增加,使交叉反应性抗体以显著增加的亲和力结合。因此,在感染性病毒粒子的背景下,这些位点的隐蔽特性可以解释为什么尽管广泛交叉反应性抗体对E蛋白中一个功能重要的结构元件具有特异性,但却缺乏有效的中和活性。

相似文献

1
Cryptic properties of a cluster of dominant flavivirus cross-reactive antigenic sites.
J Virol. 2006 Oct;80(19):9557-68. doi: 10.1128/JVI.00080-06.
2
Entry functions and antigenic structure of flavivirus envelope proteins.
Novartis Found Symp. 2006;277:57-65; discussion 65-73, 251-3.
3
Immunization with Immune Complexes Modulates the Fine Specificity of Antibody Responses to a Flavivirus Antigen.
J Virol. 2015 Aug;89(15):7970-8. doi: 10.1128/JVI.00938-15. Epub 2015 May 27.
7
Impact of flavivirus vaccine-induced immunity on primary Zika virus antibody response in humans.
PLoS Negl Trop Dis. 2020 Feb 4;14(2):e0008034. doi: 10.1371/journal.pntd.0008034. eCollection 2020 Feb.
9
Identification of linear human B-cell epitopes of tick-borne encephalitis virus.
Virol J. 2014 Jun 19;11:115. doi: 10.1186/1743-422X-11-115.
10
Correlation between ELISA, hemagglutination inhibition, and neutralization tests after vaccination against tick-borne encephalitis.
J Med Virol. 1996 Jan;48(1):102-7. doi: 10.1002/(SICI)1096-9071(199601)48:1<102::AID-JMV16>3.0.CO;2-I.

引用本文的文献

1
Factors determining the outcomes of immune imprinting after repeated orthoflavivirus infections.
Front Immunol. 2025 Jul 16;16:1560851. doi: 10.3389/fimmu.2025.1560851. eCollection 2025.
4
A Prototype-Pathogen Approach for the Development of Flavivirus Countermeasures.
J Infect Dis. 2023 Oct 18;228(Suppl 6):S398-S413. doi: 10.1093/infdis/jiad193.
5
Development of flavivirus subviral particles with low cross-reactivity by mutations of a distinct antigenic domain.
Appl Microbiol Biotechnol. 2023 Dec;107(24):7515-7529. doi: 10.1007/s00253-023-12817-5. Epub 2023 Oct 13.
8
Broad Host Tropism of Flaviviruses during the Entry Stage.
Microbiol Spectr. 2023 Mar 21;11(2):e0528122. doi: 10.1128/spectrum.05281-22.
10
The Japanese Encephalitis Antigenic Complex Viruses: From Structure to Immunity.
Viruses. 2022 Oct 8;14(10):2213. doi: 10.3390/v14102213.

本文引用的文献

1
Antiviral antibody responses: the two extremes of a wide spectrum.
Nat Rev Immunol. 2006 Mar;6(3):231-43. doi: 10.1038/nri1783.
2
Virus membrane-fusion proteins: more than one way to make a hairpin.
Nat Rev Microbiol. 2006 Jan;4(1):67-76. doi: 10.1038/nrmicro1326.
3
Structural basis of West Nile virus neutralization by a therapeutic antibody.
Nature. 2005 Sep 29;437(7059):764-9. doi: 10.1038/nature03956.
4
Mechanism of membrane fusion by viral envelope proteins.
Adv Virus Res. 2005;64:231-61. doi: 10.1016/S0065-3527(05)64007-9.
6
Class I and class II viral fusion protein structures reveal similar principles in membrane fusion.
Mol Membr Biol. 2004 Nov-Dec;21(6):361-71. doi: 10.1080/09687860400017784.
7
Variable surface epitopes in the crystal structure of dengue virus type 3 envelope glycoprotein.
J Virol. 2005 Jan;79(2):1223-31. doi: 10.1128/JVI.79.2.1223-1231.2005.
8
The many mechanisms of viral membrane fusion proteins.
Curr Top Microbiol Immunol. 2005;285:25-66. doi: 10.1007/3-540-26764-6_2.
9
A structural perspective of the flavivirus life cycle.
Nat Rev Microbiol. 2005 Jan;3(1):13-22. doi: 10.1038/nrmicro1067.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验