Suppr超能文献

通过计算机模拟可变长度肽段提取和机器学习,变应原蛋白的计算检测达到了新的准确性水平。

Computational detection of allergenic proteins attains a new level of accuracy with in silico variable-length peptide extraction and machine learning.

作者信息

Soeria-Atmadja D, Lundell T, Gustafsson M G, Hammerling U

机构信息

Division of Toxicology, National Food Administration, Uppsala, Sweden

出版信息

Nucleic Acids Res. 2006;34(13):3779-93. doi: 10.1093/nar/gkl467. Epub 2006 Aug 23.

Abstract

The placing of novel or new-in-the-context proteins on the market, appearing in genetically modified foods, certain bio-pharmaceuticals and some household products leads to human exposure to proteins that may elicit allergic responses. Accurate methods to detect allergens are therefore necessary to ensure consumer/patient safety. We demonstrate that it is possible to reach a new level of accuracy in computational detection of allergenic proteins by presenting a novel detector, Detection based on Filtered Length-adjusted Allergen Peptides (DFLAP). The DFLAP algorithm extracts variable length allergen sequence fragments and employs modern machine learning techniques in the form of a support vector machine. In particular, this new detector shows hitherto unmatched specificity when challenged to the Swiss-Prot repository without appreciable loss of sensitivity. DFLAP is also the first reported detector that successfully discriminates between allergens and non-allergens occurring in protein families known to hold both categories. Allergenicity assessment for specific protein sequences of interest using DFLAP is possible via ulfh@slv.se.

摘要

新型蛋白质或在特定背景下出现的新蛋白质投放市场,这些蛋白质存在于转基因食品、某些生物制药和一些家用产品中,会导致人类接触可能引发过敏反应的蛋白质。因此,需要准确的方法来检测过敏原,以确保消费者/患者的安全。我们展示了通过提出一种新型检测器——基于过滤长度调整过敏原肽的检测法(DFLAP),在计算检测过敏原蛋白方面可以达到新的准确性水平。DFLAP算法提取可变长度的过敏原序列片段,并采用支持向量机形式的现代机器学习技术。特别是,当在瑞士蛋白质数据库中进行测试时,这种新型检测器显示出迄今为止无与伦比的特异性,且灵敏度没有明显损失。DFLAP也是第一个成功区分已知同时包含过敏原和非过敏原的蛋白质家族中过敏原和非过敏原的报道检测器。通过ulfh@slv.se可以使用DFLAP对特定感兴趣的蛋白质序列进行致敏性评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bfe/1540723/486140e8495f/gkl467f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验