Suppr超能文献

主要易化子超家族的建模、对接与模拟

Modeling, docking, and simulation of the major facilitator superfamily.

作者信息

Holyoake John, Caulfeild Victoria, Baldwin Stephen A, Sansom Mark S P

机构信息

Department of Biochemistry, University of Oxford, Oxford, United Kingdom.

出版信息

Biophys J. 2006 Nov 15;91(10):L84-6. doi: 10.1529/biophysj.106.093971. Epub 2006 Sep 15.

Abstract

X-ray structures are known for three members of the Major Facilitator Superfamily (MFS) of membrane transporter proteins, thus enabling the use of homology modeling to extrapolate to other MFS members. However, before employing such models for, e.g., mutational or docking studies, it is essential to develop a measure of their quality. To aid development of such metrics, two disparate MFS members (NupG and GLUT1) have been modeled. In addition, control models were created with shuffled sequences, to mimic poor quality homology models. These models and the template crystal structures have been examined in terms of both static and dynamic indicators of structural quality. Comparison of the behavior of modeled structures with the crystal structures in molecular dynamics simulations provided a metric for model quality. Docking of the inhibitor forskolin to GLUT1 and to a control model revealed significant differences, indicating that we may identify accurate models despite low sequence identity between target sequences and templates.

摘要

膜转运蛋白主要易化子超家族(MFS)的三个成员的X射线结构已为人所知,因此可以利用同源建模来推断其他MFS成员。然而,在将此类模型用于例如突变或对接研究之前,必须制定一种衡量其质量的方法。为了帮助开发此类指标,已对两个不同的MFS成员(NupG和GLUT1)进行了建模。此外,还创建了具有随机序列的对照模型,以模拟质量较差的同源模型。已根据结构质量的静态和动态指标对这些模型和模板晶体结构进行了研究。在分子动力学模拟中,将建模结构的行为与晶体结构进行比较,提供了一种衡量模型质量的指标。抑制剂福司可林与GLUT1和一个对照模型的对接显示出显著差异,这表明尽管目标序列与模板之间的序列同一性较低,我们仍可以识别出准确的模型。

相似文献

1
Modeling, docking, and simulation of the major facilitator superfamily.
Biophys J. 2006 Nov 15;91(10):L84-6. doi: 10.1529/biophysj.106.093971. Epub 2006 Sep 15.
2
Modeling of glycerol-3-phosphate transporter suggests a potential 'tilt' mechanism involved in its function.
J Bioinform Comput Biol. 2008 Oct;6(5):885-904. doi: 10.1142/s0219720008003801.
3
Eukaryotic major facilitator superfamily transporter modeling based on the prokaryotic GlpT crystal structure.
Mol Membr Biol. 2007 Sep-Dec;24(5-6):333-41. doi: 10.1080/09687680701496507.
6
Molecular basis for substrate recognition by the bacterial nucleoside transporter NupG.
J Biol Chem. 2021 Jan-Jun;296:100479. doi: 10.1016/j.jbc.2021.100479. Epub 2021 Feb 26.
7
Understanding transport by the major facilitator superfamily (MFS): structures pave the way.
Nat Rev Mol Cell Biol. 2016 Feb;17(2):123-32. doi: 10.1038/nrm.2015.25. Epub 2016 Jan 13.
8
Structure and transport mechanism of the bacterial oxalate transporter OxlT.
Biophys J. 2004 Nov;87(5):3600-7. doi: 10.1529/biophysj.104.049320. Epub 2004 Aug 31.
9
Ins and outs of major facilitator superfamily antiporters.
Annu Rev Microbiol. 2008;62:289-305. doi: 10.1146/annurev.micro.61.080706.093329.

引用本文的文献

1
Capturing Functional Motions of Membrane Channels and Transporters with Molecular Dynamics Simulation.
J Comput Theor Nanosci. 2010 Dec;7(12):2481-2500. doi: 10.1166/jctn.2010.1636.
2
Use of molecular modelling to probe the mechanism of the nucleoside transporter NupG.
Mol Membr Biol. 2013 Mar;30(2):114-28. doi: 10.3109/09687688.2012.748939. Epub 2012 Dec 21.
3
Sequence determinants of GLUT1-mediated accelerated-exchange transport: analysis by homology-scanning mutagenesis.
J Biol Chem. 2012 Dec 14;287(51):42533-44. doi: 10.1074/jbc.M112.369587. Epub 2012 Oct 23.
5
Twelve transmembrane helices form the functional core of mammalian MATE1 (multidrug and toxin extruder 1) protein.
J Biol Chem. 2012 Aug 10;287(33):27971-82. doi: 10.1074/jbc.M112.386979. Epub 2012 Jun 21.
6
The major facilitator superfamily (MFS) revisited.
FEBS J. 2012 Jun;279(11):2022-35. doi: 10.1111/j.1742-4658.2012.08588.x. Epub 2012 May 8.
7
Pre-docking filter for protein and ligand 3D structures.
Bioinformation. 2008;3(5):189-93. doi: 10.6026/97320630003189. Epub 2008 Dec 31.
8
Model development for the viral Kcv potassium channel.
Biophys J. 2009 Jan;96(2):485-98. doi: 10.1016/j.bpj.2008.09.050.
10
Analysis of glucose transporter topology and structural dynamics.
J Biol Chem. 2008 Dec 26;283(52):36416-24. doi: 10.1074/jbc.M804802200. Epub 2008 Nov 3.

本文引用的文献

1
Structure of the multidrug transporter EmrD from Escherichia coli.
Science. 2006 May 5;312(5774):741-4. doi: 10.1126/science.1125629.
2
On the accuracy of homology modeling and sequence alignment methods applied to membrane proteins.
Biophys J. 2006 Jul 15;91(2):508-17. doi: 10.1529/biophysj.106.082313. Epub 2006 Apr 28.
3
Docking studies show that D-glucose and quercetin slide through the transporter GLUT1.
J Biol Chem. 2006 Mar 3;281(9):5797-803. doi: 10.1074/jbc.M509422200. Epub 2005 Dec 27.
5
Membrane protein structure quality in molecular dynamics simulation.
J Mol Graph Model. 2005 Oct;24(2):157-65. doi: 10.1016/j.jmgm.2005.05.006.
8
Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli.
Science. 2003 Aug 1;301(5633):616-20. doi: 10.1126/science.1087619.
9
Structure and mechanism of the lactose permease of Escherichia coli.
Science. 2003 Aug 1;301(5633):610-5. doi: 10.1126/science.1088196.
10
Three-dimensional structure of a bacterial oxalate transporter.
Nat Struct Biol. 2002 Aug;9(8):597-600. doi: 10.1038/nsb821.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验