Suppr超能文献

序列导向的核小体破坏对酵母基因组中α2/Mcm1细胞类型特异性抑制的影响。

Effect of sequence-directed nucleosome disruption on cell-type-specific repression by alpha2/Mcm1 in the yeast genome.

作者信息

Morohashi Nobuyuki, Yamamoto Yuichi, Kuwana Shunsuke, Morita Wataru, Shindo Heisaburo, Mitchell Aaron P, Shimizu Mitsuhiro

机构信息

Department of Chemistry, Meisei University, 2-1-1 Hodokubo, Hino, Tokyo 191-8506, Japan.

出版信息

Eukaryot Cell. 2006 Nov;5(11):1925-33. doi: 10.1128/EC.00105-06. Epub 2006 Sep 15.

Abstract

In Saccharomyces cerevisiae, a-cell-specific genes are repressed in MATalpha cells by alpha2/Mcm1, acting in concert with the Ssn6-Tup1 corepressors and the Isw2 chromatin remodeling complex, and nucleosome positioning has been proposed as one mechanism of repression. However, prior studies showed that nucleosome positioning is not essential for repression by alpha2/Mcm1 in artificial reporter plasmids, and the importance of the nucleosome positioning remains questionable. We have tested the function of positioned nucleosomes through alteration of genomic chromatin at the a-cell-specific gene BAR1. We report here that a positioned nucleosome in the BAR1 promoter is disrupted in cis by the insertion of diverse DNA sequences such as poly(dA) . poly(dT) and poly(dC-dG) . poly(dC-dG), leading to inappropriate partial derepression of BAR1. Also, we show that isw2 mutation causes loss of nucleosome positioning in BAR1 in MATalpha cells as well as partial disruption of repression. Thus, nucleosome positioning is required for full repression, but loss of nucleosome positioning is not sufficient to relieve repression completely. Even though disruption of nucleosome positioning by the cis- and trans-acting modulators of chromatin has a modest effect on the level of transcription, it causes significant degradation of the alpha-mating pheromone in MATalpha cells, thereby affecting its cell type identity. Our results illustrate a useful paradigm for analysis of chromatin structural effects at genomic loci.

摘要

在酿酒酵母中,a细胞特异性基因在MATα细胞中被α2/Mcm1抑制,α2/Mcm1与Ssn6-Tup1共抑制因子以及Isw2染色质重塑复合物协同作用,并且核小体定位被认为是一种抑制机制。然而,先前的研究表明,在人工报告质粒中,核小体定位对于α2/Mcm1的抑制作用并非必不可少,核小体定位的重要性仍然存疑。我们通过改变a细胞特异性基因BAR1处的基因组染色质来测试定位核小体的功能。我们在此报告,BAR1启动子中的定位核小体在顺式作用下会因插入多种DNA序列(如聚(dA)·聚(dT)和聚(dC-dG)·聚(dC-dG))而被破坏,从而导致BAR1不适当的部分去抑制。此外,我们表明,Isw2突变会导致MATα细胞中BAR1的核小体定位丧失以及抑制作用的部分破坏。因此,核小体定位是完全抑制所必需的,但核小体定位的丧失并不足以完全解除抑制。尽管染色质的顺式和反式作用调节剂对核小体定位的破坏对转录水平的影响不大,但它会导致MATα细胞中α交配信息素的显著降解,从而影响其细胞类型身份。我们的结果说明了一种用于分析基因组位点染色质结构效应的有用范例。

相似文献

1
Effect of sequence-directed nucleosome disruption on cell-type-specific repression by alpha2/Mcm1 in the yeast genome.
Eukaryot Cell. 2006 Nov;5(11):1925-33. doi: 10.1128/EC.00105-06. Epub 2006 Sep 15.
2
5-bromodeoxyuridine induces transcription of repressed genes with disruption of nucleosome positioning.
FEBS J. 2010 Nov;277(21):4539-48. doi: 10.1111/j.1742-4658.2010.07868.x. Epub 2010 Oct 1.
3
Roles of transcription factor Mot3 and chromatin in repression of the hypoxic gene ANB1 in yeast.
Mol Cell Biol. 2000 Oct;20(19):7088-98. doi: 10.1128/MCB.20.19.7088-7098.2000.
4
Ssn6-Tup1 requires the ISW2 complex to position nucleosomes in Saccharomyces cerevisiae.
EMBO J. 2004 Jun 2;23(11):2246-57. doi: 10.1038/sj.emboj.7600227. Epub 2004 Apr 29.
5
Redundant mechanisms are used by Ssn6-Tup1 in repressing chromosomal gene transcription in Saccharomyces cerevisiae.
J Biol Chem. 2004 Sep 17;279(38):39240-50. doi: 10.1074/jbc.M407159200. Epub 2004 Jul 14.
7
Amino termini of histones H3 and H4 are required for a1-alpha2 repression in yeast.
Mol Cell Biol. 1997 Nov;17(11):6555-62. doi: 10.1128/MCB.17.11.6555.
8
Tup1-Ssn6 and Swi-Snf remodelling activities influence long-range chromatin organization upstream of the yeast SUC2 gene.
Nucleic Acids Res. 2007;35(16):5520-31. doi: 10.1093/nar/gkm573. Epub 2007 Aug 17.
9
In vivo effects of histone H3 depletion on nucleosome occupancy and position in Saccharomyces cerevisiae.
PLoS Genet. 2012;8(6):e1002771. doi: 10.1371/journal.pgen.1002771. Epub 2012 Jun 21.
10
Basis of specificity for a conserved and promiscuous chromatin remodeling protein.
Elife. 2021 Feb 12;10:e64061. doi: 10.7554/eLife.64061.

引用本文的文献

1
Chemical map-based prediction of nucleosome positioning using the Bioconductor package nuCpos.
BMC Bioinformatics. 2021 Jun 13;22(1):322. doi: 10.1186/s12859-021-04240-2.
3
A synthetic biology approach to probing nucleosome symmetry.
Elife. 2017 Sep 12;6:e28836. doi: 10.7554/eLife.28836.
4
Quantitative comparison between poly(L-arginine) and poly(L-lysine) at each step of polyplex-based gene transfection using a microinjection technique.
Sci Technol Adv Mater. 2012 Feb 9;13(1):015009. doi: 10.1088/1468-6996/13/1/015009. eCollection 2012 Feb.
5
Sequence-directed nucleosome-depletion is sufficient to activate transcription from a yeast core promoter in vivo.
Biochem Biophys Res Commun. 2016 Jul 22;476(2):57-62. doi: 10.1016/j.bbrc.2016.05.063. Epub 2016 May 18.
7
Telomeric repeats act as nucleosome-disfavouring sequences in vivo.
Nucleic Acids Res. 2014 Feb;42(3):1541-52. doi: 10.1093/nar/gkt1006. Epub 2013 Oct 29.
8
The MAT locus genes play different roles in sexual reproduction and pathogenesis in Fusarium graminearum.
PLoS One. 2013 Jun 24;8(6):e66980. doi: 10.1371/journal.pone.0066980. Print 2013.
9
Archaeal nucleosome positioning in vivo and in vitro is directed by primary sequence motifs.
BMC Genomics. 2013 Jun 10;14:391. doi: 10.1186/1471-2164-14-391.
10
Shields up: the Tup1-Cyc8 repressor complex blocks coactivator recruitment.
Genes Dev. 2011 Dec 1;25(23):2429-35. doi: 10.1101/gad.181768.111.

本文引用的文献

1
Cooperative activity of BRG1 and Z-DNA formation in chromatin remodeling.
Mol Cell Biol. 2006 Apr;26(7):2550-9. doi: 10.1128/MCB.26.7.2550-2559.2006.
2
Mechanism of the long range anti-silencing function of targeted histone acetyltransferases in yeast.
J Biol Chem. 2006 Feb 17;281(7):3980-8. doi: 10.1074/jbc.M510140200. Epub 2005 Dec 19.
3
Two distinct mechanisms of chromatin interaction by the Isw2 chromatin remodeling complex in vivo.
Mol Cell Biol. 2005 Nov;25(21):9165-74. doi: 10.1128/MCB.25.21.9165-9174.2005.
4
Genome-scale identification of nucleosome positions in S. cerevisiae.
Science. 2005 Jul 22;309(5734):626-30. doi: 10.1126/science.1112178. Epub 2005 Jun 16.
8
Distributions of Z-DNA and nuclear factor I in human chromosome 22: a model for coupled transcriptional regulation.
Nucleic Acids Res. 2004 Dec 14;32(22):6501-10. doi: 10.1093/nar/gkh988. Print 2004.
9
Redundant mechanisms are used by Ssn6-Tup1 in repressing chromosomal gene transcription in Saccharomyces cerevisiae.
J Biol Chem. 2004 Sep 17;279(38):39240-50. doi: 10.1074/jbc.M407159200. Epub 2004 Jul 14.
10
Ssn6-Tup1 requires the ISW2 complex to position nucleosomes in Saccharomyces cerevisiae.
EMBO J. 2004 Jun 2;23(11):2246-57. doi: 10.1038/sj.emboj.7600227. Epub 2004 Apr 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验