Hirota C L, McKay D M
Department Physiology & Biophysics, University of Calgary, Calgary, AB, Canada.
Br J Pharmacol. 2006 Nov;149(5):463-79. doi: 10.1038/sj.bjp.0706889. Epub 2006 Sep 18.
Acetylcholine (ACh) is critical in controlling epithelial ion transport and hence water movements for gut hydration. Here we review the mechanism of cholinergic control of epithelial ion transport across the mammalian intestine. The cholinergic nervous system affects basal ion flux and can evoke increased active ion transport events. Most studies rely on measuring increases in short-circuit current (ISC = active ion transport) evoked by adding ACh or cholinomimetics to intestinal tissue mounted in Ussing chambers. Despite subtle species and gut regional differences, most data indicate that, under normal circumstances, the effect of ACh on intestinal ion transport is mainly an increase in Cl- secretion due to interaction with epithelial M3 muscarinic ACh receptors (mAChRs) and, to a lesser extent, neuronal M1 mAChRs; however, AChR pharmacology has been plagued by a lack of good receptor subtype-selective compounds. Mice lacking M3 mAChRs display intact cholinergically-mediated intestinal ion transport, suggesting a possible compensatory mechanism. Inflamed tissues often display perturbations in the enteric cholinergic system and reduced intestinal ion transport responses to cholinomimetics. The mechanism(s) underlying this hyporesponsiveness are not fully defined. Inflammation-evoked loss of mAChR-mediated control of epithelial ion transport in the mouse reveals a role for neuronal nicotinic AChRs, representing a hitherto unappreciated braking system to limit ACh-evoked Cl- secretion. We suggest that: i) pharmacological analyses should be supported by the use of more selective compounds and supplemented with molecular biology techniques targeting specific ACh receptors and signalling molecules, and ii) assessment of ion transport in normal tissue must be complemented with investigations of tissues from patients or animals with intestinal disease to reveal control mechanisms that may go undetected by focusing on healthy tissue only.
乙酰胆碱(ACh)对于控制上皮离子转运以及肠道水合作用中的水分移动至关重要。在此,我们综述胆碱能对跨哺乳动物肠道上皮离子转运的控制机制。胆碱能神经系统影响基础离子通量,并能引发主动离子转运事件增加。大多数研究依赖于测量将ACh或拟胆碱药添加到安装在尤斯灌流小室中的肠道组织后所诱发的短路电流增加(ISC = 主动离子转运)。尽管存在细微的物种和肠道区域差异,但大多数数据表明,在正常情况下,ACh对肠道离子转运的影响主要是由于与上皮M3毒蕈碱型ACh受体(mAChRs)相互作用导致Cl⁻分泌增加,在较小程度上还与神经元M1 mAChRs有关;然而,AChR药理学一直受到缺乏良好的受体亚型选择性化合物的困扰。缺乏M3 mAChRs的小鼠表现出完整的胆碱能介导的肠道离子转运,提示可能存在补偿机制。炎症组织常常显示肠道胆碱能系统紊乱以及对拟胆碱药的肠道离子转运反应降低。这种低反应性的潜在机制尚未完全明确。炎症诱发的小鼠mAChR介导的上皮离子转运控制丧失揭示了神经元烟碱型AChRs的作用,代表了一种迄今未被认识的制动系统以限制ACh诱发的Cl⁻分泌。我们建议:i)药理学分析应辅以使用更具选择性的化合物,并补充针对特定ACh受体和信号分子的分子生物学技术;ii)对正常组织中离子转运的评估必须辅以对患有肠道疾病的患者或动物组织的研究,以揭示仅关注健康组织可能无法检测到的控制机制。