Suppr超能文献

简约表示法及最近邻效应在蛋白质折叠模拟中的重要性。

Minimalist representations and the importance of nearest neighbor effects in protein folding simulations.

作者信息

Colubri Andrés, Jha Abhishek K, Shen Min-Yi, Sali Andrej, Berry R Stephen, Sosnick Tobin R, Freed Karl F

机构信息

Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA.

出版信息

J Mol Biol. 2006 Nov 3;363(4):835-57. doi: 10.1016/j.jmb.2006.08.035. Epub 2006 Aug 18.

Abstract

In order to investigate the level of representation required to simulate folding and predict structure, we test the ability of a variety of reduced representations to identify native states in decoy libraries and to recover the native structure given the advanced knowledge of the very broad native Ramachandran basin assignments. Simplifications include the removal of the entire side-chain or the retention of only the Cbeta atoms. Scoring functions are derived from an all-atom statistical potential that distinguishes between atoms and different residue types. Structures are obtained by minimizing the scoring function with a computationally rapid simulated annealing algorithm. Results are compared for simulations in which backbone conformations are sampled from a Protein Data Bank-based backbone rotamer library generated by either ignoring or including a dependence on the identity and conformation of the neighboring residues. Only when the Cbeta atoms and nearest neighbor effects are included do the lowest energy structures generally fall within 4 A of the native backbone root-mean square deviation (RMSD), despite the initial configuration being highly expanded with an average RMSD > or = 10 A. The side-chains are reinserted into the Cbeta models with minimal steric clash. Therefore, the detailed, all-atom information lost in descending to a Cbeta-level representation is recaptured to a large measure using backbone dihedral angle sampling that includes nearest neighbor effects and an appropriate scoring function.

摘要

为了研究模拟折叠和预测结构所需的表示水平,我们测试了各种简化表示在诱饵库中识别天然状态以及在已知非常宽泛的天然拉氏构象分布的先验知识的情况下恢复天然结构的能力。简化方法包括去除整个侧链或仅保留Cβ原子。评分函数源自一种全原子统计势,该势可区分原子和不同的残基类型。通过使用计算速度快的模拟退火算法最小化评分函数来获得结构。比较了在以下模拟中的结果:从基于蛋白质数据库的主链旋转异构体库中采样主链构象,该库通过忽略或包含对相邻残基的身份和构象的依赖性来生成。只有当包含Cβ原子和最近邻效应时,尽管初始构型高度扩展,平均均方根偏差(RMSD)≥10 Å,但最低能量结构通常才会落在天然主链均方根偏差(RMSD)的4 Å范围内。侧链以最小的空间冲突重新插入到Cβ模型中。因此,通过使用包含最近邻效应和适当评分函数的主链二面角采样,在降至Cβ水平表示时丢失的详细全原子信息在很大程度上得以重新获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验