Department of Plant and Microbial Biology, University of California, Berkeley, California.
Hum Mutat. 2019 Sep;40(9):1507-1518. doi: 10.1002/humu.23846. Epub 2019 Aug 7.
We present a computational model for predicting mutational impact on enzymatic activity of human acid α-glucosidase (GAA), an enzyme associated with Pompe disease. Using a model that combines features specific to GAA with other general evolutionary and physiochemical features, we made blind predictions of enzymatic activity relative to wildtype human GAA for >300 GAA mutants, as part of the Critical Assessment of Genome Interpretation 5 GAA challenge. We found that gene-specific features can improve the performance of existing impact prediction tools that mostly rely on general features for pathogenicity prediction. Majority of the poorly predicted mutants that lower wildtype GAA enzyme activity occurred on the surface of the GAA protein. We also found that gene-specific features were uncorrelated with existing methods and provided orthogonal information for interpreting the origin of pathogenicity, particular in variants that are poorly predicted by existing general methods. Specific variants in GAA, when investigated in the context of its protein structure, suggested gene-specific information like the disruption of local backbone torsional geometry and disruption of particular sidechain-sidechain hydrogen bonds as some potential sources for pathogenicity.
我们提出了一个计算模型,用于预测人类酸性α-葡萄糖苷酶(GAA)突变对酶活性的影响,GAA 是与庞贝病相关的一种酶。我们使用一种将 GAA 特有的特征与其他一般进化和生理化学特征相结合的模型,对超过 300 种 GAA 突变体相对于野生型人类 GAA 的酶活性进行了盲目预测,这是基因组解读 5 GAA 挑战赛的一部分。我们发现,针对特定基因的特征可以提高主要依赖一般特征进行致病性预测的现有影响预测工具的性能。降低野生型 GAA 酶活性的大多数预测不良的突变体发生在 GAA 蛋白的表面。我们还发现,针对特定基因的特征与现有方法不相关,并为解释致病性的起源提供了正交信息,特别是在现有一般方法预测不良的变体中。在 GAA 的特定变体中,当在其蛋白质结构的背景下进行研究时,提示了一些潜在的致病性来源,如局部骨架扭转几何结构的破坏和特定侧链-侧链氢键的破坏等针对特定基因的信息。