Baxa Michael C, Yu Wookyung, Adhikari Aashish N, Ge Liang, Xia Zhen, Zhou Ruhong, Freed Karl F, Sosnick Tobin R
Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637; Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637;
Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637; Center for Proteome Biophysics, Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873, Korea;
Proc Natl Acad Sci U S A. 2015 Jul 7;112(27):8302-7. doi: 10.1073/pnas.1503613112. Epub 2015 Jun 22.
Experimental and computational folding studies of Proteins L & G and NuG2 typically find that sequence differences determine which of the two hairpins is formed in the transition state ensemble (TSE). However, our recent work on Protein L finds that its TSE contains both hairpins, compelling a reassessment of the influence of sequence on the folding behavior of the other two homologs. We characterize the TSEs for Protein G and NuG2b, a triple mutant of NuG2, using ψ analysis, a method for identifying contacts in the TSE. All three homologs are found to share a common and near-native TSE topology with interactions between all four strands. However, the helical content varies in the TSE, being largely absent in Proteins G & L but partially present in NuG2b. The variability likely arises from competing propensities for the formation of nonnative β turns in the naturally occurring proteins, as observed in our TerItFix folding algorithm. All-atom folding simulations of NuG2b recapitulate the observed TSEs with four strands for 5 of 27 transition paths [Lindorff-Larsen K, Piana S, Dror RO, Shaw DE (2011) Science 334(6055):517-520]. Our data support the view that homologous proteins have similar folding mechanisms, even when nonnative interactions are present in the transition state. These findings emphasize the ongoing challenge of accurately characterizing and predicting TSEs, even for relatively simple proteins.
对蛋白质L、G和NuG2进行的实验性和计算性折叠研究通常发现,序列差异决定了在过渡态系综(TSE)中形成的是两个发夹结构中的哪一个。然而,我们最近对蛋白质L的研究发现,其TSE包含两个发夹结构,这促使我们重新评估序列对其他两个同源物折叠行为的影响。我们使用ψ分析(一种识别TSE中接触的方法)来表征蛋白质G和NuG2b(NuG2的三重突变体)的TSE。发现所有这三个同源物都具有共同且接近天然的TSE拓扑结构,四条链之间存在相互作用。然而,TSE中的螺旋含量有所不同,在蛋白质G和L中基本不存在,但在NuG2b中部分存在。这种变异性可能源于天然蛋白质中形成非天然β转角的竞争倾向,正如我们在TerItFix折叠算法中所观察到的那样。对NuG2b进行的全原子折叠模拟在27条过渡路径中的5条中重现了观察到的具有四条链的TSE [Lindorff-Larsen K, Piana S, Dror RO, Shaw DE (2011) Science 334(6055):517-520]。我们的数据支持这样一种观点,即同源蛋白质具有相似的折叠机制,即使在过渡态中存在非天然相互作用。这些发现强调了准确表征和预测TSE所面临的持续挑战,即使对于相对简单的蛋白质也是如此。