Suppr超能文献

不同微阵列平台生成的预测特征基因和分类器的一致性。

Consistency of predictive signature genes and classifiers generated using different microarray platforms.

机构信息

College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.

出版信息

Pharmacogenomics J. 2010 Aug;10(4):247-57. doi: 10.1038/tpj.2010.34.

Abstract

Microarray-based classifiers and associated signature genes generated from various platforms are abundantly reported in the literature; however, the utility of the classifiers and signature genes in cross-platform prediction applications remains largely uncertain. As part of the MicroArray Quality Control Phase II (MAQC-II) project, we show in this study 80-90% cross-platform prediction consistency using a large toxicogenomics data set by illustrating that: (1) the signature genes of a classifier generated from one platform can be directly applied to another platform to develop a predictive classifier; (2) a classifier developed using data generated from one platform can accurately predict samples that were profiled using a different platform. The results suggest the potential utility of using published signature genes in cross-platform applications and the possible adoption of the published classifiers for a variety of applications. The study reveals an opportunity for possible translation of biomarkers identified using microarrays to clinically validated non-array gene expression assays.

摘要

基于微阵列的分类器和相关的签名基因是从各种平台产生的,在文献中大量报道;然而,分类器和签名基因在跨平台预测应用中的实用性在很大程度上仍然不确定。作为 MicroArray Quality Control Phase II(MAQC-II)项目的一部分,我们通过说明以下内容在这项研究中展示了使用大型毒理学基因组数据集进行的 80-90%的跨平台预测一致性:(1)从一个平台生成的分类器的签名基因可以直接应用于另一个平台来开发预测分类器;(2)使用一个平台生成的数据开发的分类器可以准确地预测使用不同平台进行分析的样本。结果表明,在跨平台应用中使用已发表的签名基因和采用已发表的分类器进行各种应用具有潜在的实用性。该研究揭示了使用微阵列鉴定的生物标志物转化为临床验证的非阵列基因表达测定的机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf99/2920073/19747e1c68ce/tpj201034f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验