Suppr超能文献

在存在先验信息的情况下,基于样方抽样数据对物种丰富度进行贝叶斯估计。

Bayesian estimation of species richness from quadrat sampling data in the presence of prior information.

作者信息

Dupuis Jérôme A, Joachim Jean

机构信息

L.S.P. Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse, France.

出版信息

Biometrics. 2006 Sep;62(3):706-12. doi: 10.1111/j.1541-0420.2006.00524.x.

Abstract

We consider the problem of estimating the number of species of an animal community. It is assumed that it is possible to draw up a list of species liable to be present in this community. Data are collected from quadrat sampling. Models considered in this article separate the assumptions related to the experimental protocol and those related to the spatial distribution of species in the quadrats. Our parameterization enables us to incorporate prior information on the presence, detectability, and spatial density of species. Moreover, we elaborate procedures to build the prior distributions on these parameters from information furnished by external data. A simulation study is carried out to examine the influence of different priors on the performances of our estimator. We illustrate our approach by estimating the number of nesting bird species in a forest.

摘要

我们考虑估计动物群落物种数量的问题。假定可以列出该群落中可能存在的物种清单。通过样方抽样收集数据。本文所考虑的模型将与实验方案相关的假设和与样方中物种空间分布相关的假设区分开来。我们的参数化方法使我们能够纳入有关物种存在、可检测性和空间密度的先验信息。此外,我们详细阐述了根据外部数据提供的信息构建这些参数先验分布的程序。进行了一项模拟研究,以检验不同先验对我们估计器性能的影响。我们通过估计森林中筑巢鸟类物种的数量来说明我们的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验