Dupuis Jerome A, Schwarz Carl James
Laboratoire de Statistique et Probabilités, Université Paul Sabatier, Toulouse, France.
Biometrics. 2007 Dec;63(4):1015-22. doi: 10.1111/j.1541-0420.2007.00815.x. Epub 2007 May 14.
This article considers a Bayesian approach to the multistate extension of the Jolly-Seber model commonly used to estimate population abundance in capture-recapture studies. It extends the work of George and Robert (1992, Biometrika79, 677-683), which dealt with the Bayesian estimation of a closed population with only a single state for all animals. A super-population is introduced to model new entrants in the population. Bayesian estimates of abundance are obtained by implementing a Gibbs sampling algorithm based on data augmentation of the missing data in the capture histories when the state of the animal is unknown. Moreover, a partitioning of the missing data is adopted to ensure the convergence of the Gibbs sampling algorithm even in the presence of impossible transitions between some states. Lastly, we apply our methodology to a population of fish to estimate abundance and movement.
本文考虑了一种贝叶斯方法,用于对Jolly-Seber模型进行多状态扩展,该模型常用于捕获-再捕获研究中估计种群数量。它扩展了George和Robert(1992年,《生物统计学》79卷,677 - 683页)的工作,他们处理的是所有动物只有单一状态的封闭种群的贝叶斯估计。引入了一个超级种群来对种群中的新进入者进行建模。当动物状态未知时,通过基于捕获历史中缺失数据的数据扩充实现吉布斯采样算法,获得种群数量的贝叶斯估计。此外,采用了对缺失数据的划分,以确保即使在某些状态之间存在不可能的转移时吉布斯采样算法也能收敛。最后,我们将我们的方法应用于一群鱼,以估计数量和移动情况。