Suppr超能文献

使用非信息先验对物种数量进行贝叶斯估计。

Bayesian estimation of the number of species using noninformative priors.

作者信息

Barger Kathryn, Bunge John

机构信息

Department of Statistical Science, Cornell University, Ithaca, NY 14853, USA.

出版信息

Biom J. 2008 Dec;50(6):1064-76. doi: 10.1002/bimj.200810445.

Abstract

Consider a sample of animal abundances collected from one sampling occasion. Our focus is in estimating the number of species in a closed population. In order to conduct a noninformative Bayesian inference when modeling this data, we derive Jeffreys and reference priors from the full likelihood. We assume that the species' abundances are randomly distributed according to a distribution indexed by a finite-dimensional parameter. We consider two specific cases which assume that the mean abundances are constant or exponentially distributed. The Jeffreys and reference priors are functions of the Fisher information for the model parameters; the information is calculated in part using the linear difference score for integer parameter models (Lindsay & Roeder 1987). The Jeffreys and reference priors perform similarly in a data example we consider. The posteriors based on the Jeffreys and reference priors are proper.

摘要

考虑从一次抽样中收集到的动物丰度样本。我们关注的是估计封闭种群中的物种数量。为了在对这些数据进行建模时进行非信息性贝叶斯推断,我们从完全似然函数中推导杰弗里斯先验和参考先验。我们假设物种丰度根据由有限维参数索引的分布随机分布。我们考虑两种具体情况,即假设平均丰度是恒定的或呈指数分布。杰弗里斯先验和参考先验是模型参数的费希尔信息的函数;该信息部分使用整数参数模型的线性差分得分来计算(林赛和罗德,1987年)。在我们考虑的一个数据示例中,杰弗里斯先验和参考先验的表现相似。基于杰弗里斯先验和参考先验的后验分布是恰当的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验