Cattoir Vincent, Lesprit Philippe, Lascols Christine, Denamur Erik, Legrand Patrick, Soussy Claude-James, Cambau Emmanuelle
Service de Bactériologie-Virologie-Hygiène, AP-HP CHU, Henri Mondor Université Paris XII, 51 Avenue du Maréchal de Lattre de Tassigny, 94010 Créteil Cedex, France.
J Antimicrob Chemother. 2006 Nov;58(5):1054-7. doi: 10.1093/jac/dkl361. Epub 2006 Sep 19.
To investigate quinolone resistance mechanisms in an Escherichia coli clinical isolate (Ar2) resistant to ofloxacin but susceptible to nalidixic acid selected after 10 days of ofloxacin therapy in a patient with prostatitis.
Molecular typing (ERIC-PCR and RAPD), antibiotic susceptibility and gyrA, gyrB, parC and parE QRDR sequences were compared for E. coli Ar2 and a wild-type E. coli (Ar1) isolated 2 months earlier in the same patient. Ofloxacin-resistant mutants were selected in vitro in order to reproduce the mutations observed and the original phenotype.
The two strains were similar with regard to antibiotic susceptibility except quinolones and for ERIC-PCR and RAPD patterns, suggesting a clonal relationship and acquisition of quinolone resistance by chromosomal mutation. Quinolone MICs were 3, 0.12, 0.05 and 0.02 mg/L of nalidixic acid, ofloxacin, levofloxacin and ciprofloxacin, respectively, for E. coli Ar1 and 6, 32, 8 and 1 mg/L, respectively, for E. coli Ar2. The strain Ar2 harboured two substitutions, Gly-81-->Asp in GyrA and Ser-80-->Arg in ParC. Introduction into E. coli Ar2 of the wild-type gyrA fully complemented fluoroquinolone resistance. Although the strain was not a hypermutator, ofloxacin first-step resistant mutants with gyrA mutations were easily obtained from E. coli Ar1 and 25% of them were at codon 81. In vitro stepwise combination of Gly-81-->Asp in GyrA and Ser-80-->Arg in ParC reproduced the original phenotype in E. coli KL16.
A double topoisomerase mutant was selected in vivo by 10 days ofloxacin. The mutations were originally combined for a result of ofloxacin resistance but nalidixic acid susceptibility.
在一名前列腺炎患者接受10天氧氟沙星治疗后,对一株对氧氟沙星耐药但对萘啶酸敏感的大肠埃希菌临床分离株(Ar2)的喹诺酮耐药机制进行研究。
对大肠埃希菌Ar2和2个月前在同一患者体内分离出的野生型大肠埃希菌(Ar1)进行分子分型(ERIC-PCR和RAPD)、抗生素敏感性以及gyrA、gyrB、parC和parE喹诺酮耐药决定区(QRDR)序列比较。为重现观察到的突变和原始表型,在体外筛选出氧氟沙星耐药突变体。
除喹诺酮类药物外,两株菌在抗生素敏感性以及ERIC-PCR和RAPD图谱方面相似,提示存在克隆关系且喹诺酮耐药性是通过染色体突变获得。大肠埃希菌Ar1对萘啶酸、氧氟沙星、左氧氟沙星和环丙沙星的喹诺酮最低抑菌浓度(MIC)分别为3、0.12、0.05和0.02mg/L,而大肠埃希菌Ar分别为6、32、8和1mg/L。Ar2菌株在GyrA中有两个替换,即Gly-81→Asp,在ParC中有Ser-80→Arg。将野生型gyrA导入大肠埃希菌Ar2可完全恢复对氟喹诺酮的耐药性。尽管该菌株不是高突变株,但从大肠埃希菌Ar1中很容易获得具有gyrA突变的氧氟沙星第一步耐药突变体,其中25%的突变位于81密码子。在体外,GyrA中的Gly-81→Asp和ParC中的Ser-80→Arg逐步组合可在大肠埃希菌KL16中重现原始表型。
通过10天的氧氟沙星治疗在体内筛选出了一个双拓扑异构酶突变体。这些突变最初是由于氧氟沙星耐药但萘啶酸敏感的结果而组合在一起的。