Suppr超能文献

基于镍钛合金的智能脊柱植入物锁定机制的力学测试。

Mechanical testing of a smart spinal implant locking mechanism based on nickel-titanium alloy.

作者信息

Yeung Kelvin W K, Lu William W, Luk Keith D K, Cheung Kenneth M C

机构信息

Division of Spine Surgery, Department of Orthopaedics and Traumatology, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong.

出版信息

Spine (Phila Pa 1976). 2006 Sep 15;31(20):2296-303. doi: 10.1097/01.brs.0000238967.82799.3d.

Abstract

STUDY DESIGN

Development and testing of a new spinal implant-locking mechanism based on the special properties of nickel-titanium alloy.

OBJECTIVE

To develop a new self-tightening locking mechanism to reduce fretting corrosion at implant junctions.

SUMMARY OF BACKGROUND DATA

All current implant locking involves tightening of a nut against the rod and screw head to form a coupling. Particulate debris is generated, and the coupling becomes loose because of wear between the rod and locking mechanism (fretting). To avoid this fretting, a new locking mechanism with an automatic retightening effect based on the superelastic and shape-memory properties of nickel-titanium alloy has been developed.

METHOD

The new coupling made of nickel-titanium alloy will tightly lock the rod when temperature increases to 50 degrees C (shape-memory effect). If fretting occurs, the coupling will further tighten itself around the rod (superelastic effect). This new coupling is mechanically tested against 4 current implant couplings.

RESULTS

In axial compression, conventional couplings failed between 570 and 740 N, while the new coupling reached 800 N without loosening. In axial rotation, conventional devices failed between 1.8 and 5.3 Nm, while the new coupling reached 6.5 Nm without failure. During testing, the retightening effect could be seen on the force versus displacement plot.

CONCLUSIONS

To our knowledge, the self-tightening coupling is a new concept not previously described and is attributable to the superior superelastic effect of the new coupling. This implant coupling has the potential to be used as a very low profile system and also in nonfusion technologies in which demands on the coupling would not higher without the protection of spinal fusion.

摘要

研究设计

基于镍钛合金的特殊性能开发并测试一种新型脊柱植入物锁定机制。

目的

开发一种新型自紧锁定机制,以减少植入物连接处的微动腐蚀。

背景资料总结

目前所有的植入物锁定都涉及将螺母拧紧在杆和螺钉头上以形成连接。会产生颗粒碎片,并且由于杆和锁定机制之间的磨损(微动),连接会变松。为避免这种微动,已开发出一种基于镍钛合金的超弹性和形状记忆特性具有自动重新拧紧效果的新型锁定机制。

方法

由镍钛合金制成的新型连接件在温度升高至50摄氏度时(形状记忆效应)将紧紧锁定杆。如果发生微动,连接件将在杆周围进一步自行拧紧(超弹性效应)。将这种新型连接件与4种当前的植入物连接件进行力学测试。

结果

在轴向压缩中,传统连接件在570至740牛之间失效,而新型连接件达到800牛且未松动。在轴向旋转中,传统装置在1.8至5.3牛米之间失效,而新型连接件达到6.5牛米且未失效。在测试过程中,在力与位移图上可以看到重新拧紧的效果。

结论

据我们所知,自紧连接件是一个以前未描述过的新概念,这归因于新型连接件优越的超弹性效应。这种植入物连接件有潜力用作非常薄型的系统,也可用于对连接件要求不高且无需脊柱融合保护的非融合技术中。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验