Suppr超能文献

利用刺激反应实验和大规模模型选择揭示生化网络的调控结构。

Unravelling the regulatory structure of biochemical networks using stimulus response experiments and large-scale model selection.

作者信息

Wahl S A, Haunschild M D, Oldiges M, Wiechert W

机构信息

Department of Simulation, Institute of Systems Engineering, Faculty 11/12, University of Siegen, Paul-Bonatz-Str. 9-11, Siegen 57068, Germany.

出版信息

Syst Biol (Stevenage). 2006 Jul;153(4):275-85. doi: 10.1049/ip-syb:20050089.

Abstract

To unravel the complex in vivo regulatory interdependences of biochemical networks, experiments with the living organism are absolutely necessary. Stimulus response experiments (SREs) have become increasingly popular in recent years. The response of metabolite concentrations from all major parts of the central metabolism is monitored over time by modem analytical methods, producing several thousand data points. SREs are applied to determine enzyme kinetic parameters and to find unknown enzyme regulatory mechanisms. Owing to the complex regulatory structure of metabolic networks and the amount of measured data, the evaluation of an SRE has to be extensively supported by modelling. If the enzyme regulatory mechanisms are part of the investigation, a large number of models with different enzyme kinetics have to be tested for their ability to reproduce the observed behaviour. In this contribution, a systematic model-building process for data-driven exploratory modelling is introduced with the aim of discovering essential features of the biological system. The process is based on data pre-processing, correlation-based hypothesis generation, automatic model family generation, large-scale model selection and statistical analysis of the best-fitting models followed by an extraction of common features. It is illustrated by the example of the aromatic amino acid synthesis pathway in Escherichia coli.

摘要

为了揭示生化网络中复杂的体内调节相互依存关系,对活生物体进行实验是绝对必要的。近年来,刺激响应实验(SREs)越来越受欢迎。通过现代分析方法随时间监测中央代谢所有主要部分的代谢物浓度响应,会产生数千个数据点。SREs用于确定酶动力学参数并发现未知的酶调节机制。由于代谢网络的复杂调节结构和测量数据的数量,SRE的评估必须得到建模的广泛支持。如果酶调节机制是研究的一部分,则必须测试大量具有不同酶动力学的模型,以评估它们再现观察到的行为的能力。在本论文中,引入了一种用于数据驱动探索性建模的系统模型构建过程,旨在发现生物系统的基本特征。该过程基于数据预处理、基于相关性的假设生成、自动模型族生成、大规模模型选择以及对最佳拟合模型的统计分析,随后提取共同特征。以大肠杆菌中芳香族氨基酸合成途径为例进行说明。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验