Suppr超能文献

对465个酵母基因缺失突变体在16种不同条件下通过实验确定的生长表型进行模型驱动分析。

Model-driven analysis of experimentally determined growth phenotypes for 465 yeast gene deletion mutants under 16 different conditions.

作者信息

Snitkin Evan S, Dudley Aimée M, Janse Daniel M, Wong Kaisheen, Church George M, Segrè Daniel

机构信息

Bioinformatics graduate Program, Boston University, Boston, MA 02215, USA.

出版信息

Genome Biol. 2008;9(9):R140. doi: 10.1186/gb-2008-9-9-r140. Epub 2008 Sep 22.

Abstract

BACKGROUND

Understanding the response of complex biochemical networks to genetic perturbations and environmental variability is a fundamental challenge in biology. Integration of high-throughput experimental assays and genome-scale computational methods is likely to produce insight otherwise unreachable, but specific examples of such integration have only begun to be explored.

RESULTS

In this study, we measured growth phenotypes of 465 Saccharomyces cerevisiae gene deletion mutants under 16 metabolically relevant conditions and integrated them with the corresponding flux balance model predictions. We first used discordance between experimental results and model predictions to guide a stage of experimental refinement, which resulted in a significant improvement in the quality of the experimental data. Next, we used discordance still present in the refined experimental data to assess the reliability of yeast metabolism models under different conditions. In addition to estimating predictive capacity based on growth phenotypes, we sought to explain these discordances by examining predicted flux distributions visualized through a new, freely available platform. This analysis led to insight into the glycerol utilization pathway and the potential effects of metabolic shortcuts on model results. Finally, we used model predictions and experimental data to discriminate between alternative raffinose catabolism routes.

CONCLUSIONS

Our study demonstrates how a new level of integration between high throughput measurements and flux balance model predictions can improve understanding of both experimental and computational results. The added value of a joint analysis is a more reliable platform for specific testing of biological hypotheses, such as the catabolic routes of different carbon sources.

摘要

背景

了解复杂生化网络对基因扰动和环境变异性的反应是生物学中的一项基本挑战。高通量实验分析与基因组规模计算方法的整合可能会带来其他方式无法获得的见解,但这种整合的具体例子才刚刚开始探索。

结果

在本研究中,我们测量了465个酿酒酵母基因缺失突变体在16种代谢相关条件下的生长表型,并将其与相应的通量平衡模型预测结果进行整合。我们首先利用实验结果与模型预测之间的不一致来指导实验优化阶段,这使得实验数据质量得到了显著提高。接下来,我们利用优化后的实验数据中仍然存在的不一致来评估不同条件下酵母代谢模型的可靠性。除了基于生长表型估计预测能力外,我们还试图通过检查通过一个新的免费平台可视化的预测通量分布来解释这些不一致。该分析揭示了甘油利用途径以及代谢捷径对模型结果的潜在影响。最后,我们利用模型预测和实验数据来区分不同的棉子糖分解代谢途径。

结论

我们的研究展示了高通量测量与通量平衡模型预测之间新的整合水平如何能够增进对实验和计算结果的理解。联合分析的附加价值在于为生物学假设(如不同碳源的分解代谢途径)的具体测试提供了一个更可靠的平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e965/2592718/80decd28aefc/gb-2008-9-9-r140-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验