Suppr超能文献

深海次表层中乙烷和丙烷的生物形成。

Biological formation of ethane and propane in the deep marine subsurface.

作者信息

Hinrichs Kai-Uwe, Hayes John M, Bach Wolfgang, Spivack Arthur J, Hmelo Laura R, Holm Nils G, Johnson Carl G, Sylva Sean P

机构信息

Deutsche Forschungsgemeinschaft-Research Center Ocean Margins, Department of Geosciences, University of Bremen, P.O. Box 330440, 28334 Bremen, Germany.

出版信息

Proc Natl Acad Sci U S A. 2006 Oct 3;103(40):14684-9. doi: 10.1073/pnas.0606535103. Epub 2006 Sep 21.

Abstract

Concentrations and isotopic compositions of ethane and propane in cold, deeply buried sediments from the southeastern Pacific are best explained by microbial production of these gases in situ. Reduction of acetate to ethane provides one feasible mechanism. Propane is enriched in (13)C relative to ethane. The amount is consistent with derivation of the third C from inorganic carbon dissolved in sedimentary pore waters. At typical sedimentary conditions, the reactions yield free energy sufficient for growth. Relationships with competing processes are governed mainly by the abundance of H(2). Production of C(2) and C(3) hydrocarbons in this way provides a sink for acetate and hydrogen but upsets the general belief that hydrocarbons larger than methane derive only from thermal degradation of fossil organic material.

摘要

东南太平洋寒冷、深埋沉积物中乙烷和丙烷的浓度及同位素组成,最好的解释是这些气体在原地由微生物产生。乙酸盐还原为乙烷提供了一种可行的机制。丙烷相对于乙烷富含(13)C。其含量与沉积物孔隙水中溶解的无机碳衍生出的第三个碳原子一致。在典型的沉积条件下,这些反应产生的自由能足以支持生长。与竞争过程的关系主要由H(2)的丰度控制。以这种方式产生C(2)和C(3)碳氢化合物为乙酸盐和氢气提供了一个汇,但打破了一种普遍观点,即大于甲烷的碳氢化合物仅来自化石有机物质的热降解。

相似文献

1
Biological formation of ethane and propane in the deep marine subsurface.
Proc Natl Acad Sci U S A. 2006 Oct 3;103(40):14684-9. doi: 10.1073/pnas.0606535103. Epub 2006 Sep 21.
2
Identification of novel methane-, ethane-, and propane-oxidizing bacteria at marine hydrocarbon seeps by stable isotope probing.
Appl Environ Microbiol. 2010 Oct;76(19):6412-22. doi: 10.1128/AEM.00271-10. Epub 2010 Jul 30.
4
Spatial distributions and sea-to-air fluxes of non-methane hydrocarbons in the atmosphere and seawater of the Western Pacific Ocean.
Sci Total Environ. 2019 Jul 1;672:491-501. doi: 10.1016/j.scitotenv.2019.04.019. Epub 2019 Apr 3.
5
High rates of anaerobic oxidation of methane, ethane and propane coupled to thiosulphate reduction.
Environ Sci Pollut Res Int. 2015 Mar;22(5):3697-704. doi: 10.1007/s11356-014-3606-0. Epub 2014 Sep 27.
6
Formation of ethane and propane via abiotic reductive conversion of acetic acid in hydrothermal sediments.
Proc Natl Acad Sci U S A. 2021 Nov 23;118(47). doi: 10.1073/pnas.2005219118.
8
Hydrocarbons in hydrothermal vent fluids: the role of chromium-bearing catalysts.
Science. 2004 May 14;304(5673):1002-5. doi: 10.1126/science.1096033. Epub 2004 Apr 1.
10
Propane respiration jump-starts microbial response to a deep oil spill.
Science. 2010 Oct 8;330(6001):208-11. doi: 10.1126/science.1196830. Epub 2010 Sep 16.

引用本文的文献

1
Non-growth substrate ethane perturbs core methanotrophy in obligate methanotroph OB3b upon nutrient availability.
Appl Environ Microbiol. 2025 Aug 20;91(8):e0096925. doi: 10.1128/aem.00969-25. Epub 2025 Jul 10.
2
Back flux during anaerobic oxidation of butane support archaea-mediated alkanogenesis.
Nat Commun. 2024 Nov 7;15(1):9628. doi: 10.1038/s41467-024-53932-9.
3
Nitrite-driven anaerobic ethane oxidation.
Environ Sci Ecotechnol. 2024 Jun 13;21:100438. doi: 10.1016/j.ese.2024.100438. eCollection 2024 Sep.
5
Biogenic propane production by a marine strain isolated from the Western English Channel.
Front Microbiol. 2022 Oct 25;13:1000247. doi: 10.3389/fmicb.2022.1000247. eCollection 2022.
6
Formation of ethane and propane via abiotic reductive conversion of acetic acid in hydrothermal sediments.
Proc Natl Acad Sci U S A. 2021 Nov 23;118(47). doi: 10.1073/pnas.2005219118.
7
A methylotrophic origin of methanogenesis and early divergence of anaerobic multicarbon alkane metabolism.
Sci Adv. 2021 Jul 2;7(27). doi: 10.1126/sciadv.abj1453. Print 2021 Jul.
8
A methylotrophic origin of methanogenesis and early divergence of anaerobic multicarbon alkane metabolism.
Sci Adv. 2021 Feb 10;7(7). doi: 10.1126/sciadv.abd7180. Print 2021 Feb.
9
Thermodynamic Favorability of End Products of Anaerobic Glucose Metabolism.
ACS Omega. 2020 Jun 25;5(26):15843-15849. doi: 10.1021/acsomega.0c00790. eCollection 2020 Jul 7.
10
" Ethanoperedens," a Thermophilic Genus of Mediating the Anaerobic Oxidation of Ethane.
mBio. 2020 Apr 21;11(2):e00600-20. doi: 10.1128/mBio.00600-20.

本文引用的文献

2
Detection of Microbially Produced Gaseous Hydrocarbons Other than Methane.
Science. 1954 Mar 19;119(3090):381-2. doi: 10.1126/science.119.3090.381.
3
Heterotrophic Archaea dominate sedimentary subsurface ecosystems off Peru.
Proc Natl Acad Sci U S A. 2006 Mar 7;103(10):3846-51. doi: 10.1073/pnas.0600035103. Epub 2006 Feb 27.
4
Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean Margin.
Proc Natl Acad Sci U S A. 2006 Feb 21;103(8):2815-20. doi: 10.1073/pnas.0511033103. Epub 2006 Feb 13.
5
Microbial formation of ethane in anoxic estuarine sediments.
Appl Environ Microbiol. 1981 Jul;42(1):122-9. doi: 10.1128/aem.42.1.122-129.1981.
6
Deep sub-seafloor prokaryotes stimulated at interfaces over geological time.
Nature. 2005 Jul 21;436(7049):390-4. doi: 10.1038/nature03796.
7
Prokaryotic cells of the deep sub-seafloor biosphere identified as living bacteria.
Nature. 2005 Feb 24;433(7028):861-4. doi: 10.1038/nature03302.
8
Distributions of microbial activities in deep subseafloor sediments.
Science. 2004 Dec 24;306(5705):2216-21. doi: 10.1126/science.1101155.
9
Hydrocarbons in hydrothermal vent fluids: the role of chromium-bearing catalysts.
Science. 2004 May 14;304(5673):1002-5. doi: 10.1126/science.1096033. Epub 2004 Apr 1.
10
Comparative ecology of H2 cycling in sedimentary and phototrophic ecosystems.
Antonie Van Leeuwenhoek. 2002 Aug;81(1-4):575-85. doi: 10.1023/a:1020517924466.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验