Sparing Roland, Dafotakis Manuel, Buelte Dorothee, Meister Ingo G, Noth Johannes
Institute of Neuroscience and Biophysics, Department of Medicine, Research Centre Juelich, Juelich, Germany.
J Appl Physiol (1985). 2007 Jan;102(1):406-11. doi: 10.1152/japplphysiol.00770.2006. Epub 2006 Sep 21.
In humans, hyperventilation (HV) has various effects on systemic physiology and, in particular, on neuronal excitability and synaptic transmission. However, it is far from clear how the effects of HV are mediated at the cortical level. In this study we investigated the effects of HV-induced hypocapnia on primary motor (M1) and visual cortex (V1) excitability. We used 1) motor threshold (MT) and phosphene threshold (PT) and 2) stimulus-response (S-R) curves (i.e., recruitment curves) as measures of excitability. In the motor cortex, we additionally investigated 3) the intrinsic inhibitory and facilitatory neuronal circuits using a short-interval paired-pulse paradigm. Measurements were performed before, during, and after 10 min of HV (resulting in a minimum end-tidal Pco(2) of 15 Torr). HV significantly increased motor-evoked potential (MEP) amplitudes, particularly at lower transcranial magnetic stimulation (TMS) intensities. Paired-pulse stimulation indicated that HV decreases intracortical inhibition (ICI) without changing intracortical facilitation. The results suggestthat low Pco(2) levels modulate, in particular, the intrinsic neuronal circuits of ICI, which are largely mediated by neurons containing gamma-aminobutyric acid. Modulation of MT probably resulted from alterations of Na(+) channel conductances. A significant decrease of PT, together with higher intensity of phosphenes at low stimulus intensities, furthermore suggested that HV acts on the excitability of M1 and V1 in a comparable fashion. This finding implies that HV also affects other brain structures besides the corticospinal motor system. The further exploration of these physiological mechanisms may contribute to the understanding of the various HV-related clinical phenomenona.
在人类中,过度通气(HV)对全身生理机能有多种影响,尤其是对神经元兴奋性和突触传递。然而,目前尚不清楚HV在皮层水平的作用机制。在本研究中,我们调查了HV诱导的低碳酸血症对初级运动皮层(M1)和视觉皮层(V1)兴奋性的影响。我们使用1)运动阈值(MT)和光幻视阈值(PT)以及2)刺激-反应(S-R)曲线(即募集曲线)作为兴奋性的测量指标。在运动皮层,我们还使用短间隔配对脉冲范式研究了3)内在抑制性和易化性神经元回路。在HV持续10分钟之前、期间和之后进行测量(最终呼气末二氧化碳分压最低达到15托)。HV显著增加了运动诱发电位(MEP)的幅度,尤其是在较低的经颅磁刺激(TMS)强度下。配对脉冲刺激表明,HV降低了皮层内抑制(ICI),而不改变皮层内易化。结果表明,低二氧化碳水平尤其调节了ICI的内在神经元回路,这在很大程度上由含γ-氨基丁酸的神经元介导。MT的调节可能是由于钠通道电导的改变。PT的显著降低,以及在低刺激强度下光幻视强度的增加,进一步表明HV以类似的方式作用于M1和V1的兴奋性。这一发现意味着,HV除了影响皮质脊髓运动系统外,还会影响其他脑区。对这些生理机制的进一步探索可能有助于理解各种与HV相关的临床现象。