Suppr超能文献

在未观察到异质性情况下,对三种用于估计临床试验荟萃分析中相对风险的不同模型进行比较。

A comparison of three different models for estimating relative risk in meta-analysis of clinical trials under unobserved heterogeneity.

作者信息

Kuhnert Ronny, Böhning Dankmar

机构信息

Division for International Health and Biometry, Institute for Social Medicine, Epidemiology, and Health Economy, Joint Centre for Health Sciences and Humanities, Charité Medical School Berlin, Fabeckstr. 60-62, 14195 Berlin, Germany.

出版信息

Stat Med. 2007 May 20;26(11):2277-96. doi: 10.1002/sim.2710.

Abstract

We focus on the comparison of three statistical models used to estimate the treatment effect in meta-analysis when individually pooled data are available. The models are two conventional models, namely a multi-level and a model based upon an approximate likelihood, and a newly developed model, the profile likelihood model which might be viewed as an extension of the Mantel-Haenszel approach. To exemplify these methods, we use results from a meta-analysis of 22 trials to prevent respiratory tract infections. We show that by using the multi-level approach, in the case of baseline heterogeneity, the number of clusters or components is considerably over-estimated. The approximate and profile likelihood method showed nearly the same pattern for the treatment effect distribution. To provide more evidence two simulation studies are accomplished. The profile likelihood can be considered as a clear alternative to the approximate likelihood model. In the case of strong baseline heterogeneity, the profile likelihood method shows superior behaviour when compared with the multi-level model.

摘要

当有单独汇总的数据时,我们专注于比较用于估计荟萃分析中治疗效果的三种统计模型。这些模型是两种传统模型,即多层次模型和基于近似似然的模型,以及一种新开发的模型——轮廓似然模型,它可以被视为曼特尔 - 亨泽尔方法的扩展。为了举例说明这些方法,我们使用了一项对22项预防呼吸道感染试验的荟萃分析结果。我们表明,通过使用多层次方法,在基线异质性的情况下,聚类或成分的数量被大大高估。近似似然法和轮廓似然法在治疗效果分布上显示出几乎相同的模式。为了提供更多证据,我们完成了两项模拟研究。轮廓似然法可以被视为近似似然模型的一个明确替代方案。在强基线异质性的情况下,与多层次模型相比,轮廓似然法表现更优。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验