Suppr超能文献

通过两层神经网络的引导学习提高蛋白质残基溶剂可及性和实值主链扭转角的预测准确性。

Improving the prediction accuracy of residue solvent accessibility and real-value backbone torsion angles of proteins by guided-learning through a two-layer neural network.

作者信息

Faraggi Eshel, Xue Bin, Zhou Yaoqi

机构信息

Indiana University School of Informatics, Indiana University-Purdue University, Indianapolis, IN 46202, USA.

出版信息

Proteins. 2009 Mar;74(4):847-56. doi: 10.1002/prot.22193.

Abstract

This article attempts to increase the prediction accuracy of residue solvent accessibility and real-value backbone torsion angles of proteins through improved learning. Most methods developed for improving the backpropagation algorithm of artificial neural networks are limited to small neural networks. Here, we introduce a guided-learning method suitable for networks of any size. The method employs a part of the weights for guiding and the other part for training and optimization. We demonstrate this technique by predicting residue solvent accessibility and real-value backbone torsion angles of proteins. In this application, the guiding factor is designed to satisfy the intuitive condition that for most residues, the contribution of a residue to the structural properties of another residue is smaller for greater separation in the protein-sequence distance between the two residues. We show that the guided-learning method makes a 2-4% reduction in 10-fold cross-validated mean absolute errors (MAE) for predicting residue solvent accessibility and backbone torsion angles, regardless of the size of database, the number of hidden layers and the size of input windows. This together with introduction of two-layer neural network with a bipolar activation function leads to a new method that has a MAE of 0.11 for residue solvent accessibility, 36 degrees for psi, and 22 degrees for phi. The method is available as a Real-SPINE 3.0 server in http://sparks.informatics.iupui.edu.

摘要

本文试图通过改进学习来提高蛋白质残基溶剂可及性和真实值主链扭转角的预测准确性。大多数为改进人工神经网络的反向传播算法而开发的方法仅限于小型神经网络。在此,我们引入一种适用于任何规模网络的引导学习方法。该方法使用一部分权重进行引导,另一部分用于训练和优化。我们通过预测蛋白质的残基溶剂可及性和真实值主链扭转角来演示此技术。在这个应用中,引导因子的设计满足直观条件:对于大多数残基,两个残基在蛋白质序列距离上的分离越大,一个残基对另一个残基结构性质的贡献就越小。我们表明,无论数据库大小、隐藏层数和输入窗口大小如何,引导学习方法在预测残基溶剂可及性和主链扭转角的10折交叉验证平均绝对误差(MAE)方面降低了2 - 4%。这与引入具有双极激活函数的两层神经网络一起,产生了一种新方法,该方法对于残基溶剂可及性的MAE为0.11,对于ψ角为36度,对于φ角为22度。该方法可在http://sparks.informatics.iupui.edu上作为Real - SPINE 3.0服务器使用。

相似文献

3
Real-value prediction of backbone torsion angles.
Proteins. 2008 Jul;72(1):427-33. doi: 10.1002/prot.21940.
8
Deep learning methods for protein torsion angle prediction.
BMC Bioinformatics. 2017 Sep 18;18(1):417. doi: 10.1186/s12859-017-1834-2.
9
Predicting the errors of predicted local backbone angles and non-local solvent- accessibilities of proteins by deep neural networks.
Bioinformatics. 2016 Dec 15;32(24):3768-3773. doi: 10.1093/bioinformatics/btw549. Epub 2016 Aug 22.
10
ANGLOR: a composite machine-learning algorithm for protein backbone torsion angle prediction.
PLoS One. 2008;3(10):e3400. doi: 10.1371/journal.pone.0003400. Epub 2008 Oct 15.

引用本文的文献

1
AlphaFold2, SPINE-X, and Seder on Four Hard CASP Targets.
Methods Mol Biol. 2025;2867:141-152. doi: 10.1007/978-1-0716-4196-5_8.
2
Prediction of protein-protein interaction sites in intrinsically disordered proteins.
Front Mol Biosci. 2022 Sep 30;9:985022. doi: 10.3389/fmolb.2022.985022. eCollection 2022.
3
Predicting Protein Conformational Disorder and Disordered Binding Sites.
Methods Mol Biol. 2022;2449:95-147. doi: 10.1007/978-1-0716-2095-3_4.
4
Prediction of MoRFs based on sequence properties and convolutional neural networks.
BioData Min. 2021 Aug 14;14(1):39. doi: 10.1186/s13040-021-00275-6.
6
A Hybrid Levenberg-Marquardt Algorithm on a Recursive Neural Network for Scoring Protein Models.
Methods Mol Biol. 2021;2190:307-316. doi: 10.1007/978-1-0716-0826-5_15.
7
Entropy, Fluctuations, and Disordered Proteins.
Entropy (Basel). 2019 Aug;21(8). doi: 10.3390/e21080764. Epub 2019 Aug 6.
8
Computational prediction of MoRFs based on protein sequences and minimax probability machine.
BMC Bioinformatics. 2019 Oct 28;20(1):529. doi: 10.1186/s12859-019-3111-z.
9
10
Chemical shift-based methods in NMR structure determination.
Prog Nucl Magn Reson Spectrosc. 2018 Jun-Aug;106-107:1-25. doi: 10.1016/j.pnmrs.2018.03.002. Epub 2018 Mar 11.

本文引用的文献

2
Self-learning fuzzy controllers based on temporal backpropagation.
IEEE Trans Neural Netw. 1992;3(5):714-23. doi: 10.1109/72.159060.
3
Statistically controlled activation weight initialization (SCAWI).
IEEE Trans Neural Netw. 1992;3(4):627-31. doi: 10.1109/72.143378.
4
Optimization for training neural nets.
IEEE Trans Neural Netw. 1992;3(2):232-40. doi: 10.1109/72.125864.
5
Training feedforward networks with the Marquardt algorithm.
IEEE Trans Neural Netw. 1994;5(6):989-93. doi: 10.1109/72.329697.
7
Tuning of the structure and parameters of a neural network using an improved genetic algorithm.
IEEE Trans Neural Netw. 2003;14(1):79-88. doi: 10.1109/TNN.2002.804317.
8
Real-value prediction of backbone torsion angles.
Proteins. 2008 Jul;72(1):427-33. doi: 10.1002/prot.21940.
9
Fold recognition by concurrent use of solvent accessibility and residue depth.
Proteins. 2007 Aug 15;68(3):636-45. doi: 10.1002/prot.21459.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验