Suppr超能文献

自动分子动力学模拟和结合自由能计算在先导化合物优化中是现实可行的工具吗?线性相互作用能(LIE)方法的评估。

Are automated molecular dynamics simulations and binding free energy calculations realistic tools in lead optimization? An evaluation of the linear interaction energy (LIE) method.

作者信息

Stjernschantz Eva, Marelius John, Medina Carmen, Jacobsson Micael, Vermeulen Nico P E, Oostenbrink Chris

机构信息

Leiden/Amsterdam Center for Drug Research, Division of Molecular Toxicology, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands.

出版信息

J Chem Inf Model. 2006 Sep-Oct;46(5):1972-83. doi: 10.1021/ci0601214.

Abstract

An extensive evaluation of the linear interaction energy (LIE) method for the prediction of binding affinity of docked compounds has been performed, with an emphasis on its applicability in lead optimization. An automated setup is presented, which allows for the use of the method in an industrial setting. Calculations are performed for four realistic examples, retinoic acid receptor gamma, matrix metalloprotease 3, estrogen receptor alpha, and dihydrofolate reductase, focusing on different aspects of the procedure. The obtained LIE models are evaluated in terms of the root-mean-square (RMS) errors from experimental binding free energies and the ability to rank compounds appropriately. The results are compared to the best empirical scoring function, selected from a set of 10 scoring functions. In all cases, good LIE models can be obtained in terms of free-energy RMS errors, although reasonable ranking of the ligands of dihydrofolate reductase proves difficult for both the LIE method and scoring functions. For the other proteins, the LIE model results in better predictions than the best performing scoring function. These results indicate that the LIE approach, as a tool to evaluate docking results, can be a valuable asset in computational lead optimization programs.

摘要

已对用于预测对接化合物结合亲和力的线性相互作用能(LIE)方法进行了广泛评估,重点在于其在先导化合物优化中的适用性。本文介绍了一种自动化设置,该设置允许在工业环境中使用该方法。针对四个实际例子进行了计算,即维甲酸受体γ、基质金属蛋白酶3、雌激素受体α和二氢叶酸还原酶,重点关注该过程的不同方面。根据与实验结合自由能的均方根(RMS)误差以及对化合物进行适当排序的能力,对所得的LIE模型进行评估。将结果与从一组10种评分函数中选出的最佳经验评分函数进行比较。在所有情况下,就自由能RMS误差而言,都可以获得良好的LIE模型,尽管对于二氢叶酸还原酶的配体,无论是LIE方法还是评分函数,都难以进行合理排序。对于其他蛋白质,LIE模型的预测结果优于表现最佳的评分函数。这些结果表明,作为评估对接结果的工具,LIE方法在计算先导化合物优化程序中可能是一项有价值的资产。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验