Suppr超能文献

二氧化碳麻醉和缺氧对黑腹果蝇快速冷驯化及冷昏迷恢复的影响。

The effects of carbon dioxide anesthesia and anoxia on rapid cold-hardening and chill coma recovery in Drosophila melanogaster.

作者信息

Nilson Theresa L, Sinclair Brent J, Roberts Stephen P

机构信息

Department of Biological Sciences University of Nevada, Las Vegas, NV 89154-4004, USA.

出版信息

J Insect Physiol. 2006 Oct;52(10):1027-33. doi: 10.1016/j.jinsphys.2006.07.001. Epub 2006 Jul 27.

Abstract

Carbon dioxide gas is used as an insect anesthetic in many laboratories, despite recent studies which have shown that CO(2) can alter behavior and fitness. We examine the effects of CO(2) and anoxia (N(2)) on cold tolerance, measuring the rapid cold-hardening (RCH) response and chill coma recovery in Drosophila melanogaster. Short exposures to CO(2) or N(2) do not significantly affect RCH, but 60 min of exposure negates RCH. Exposure to CO(2) anesthesia increases chill coma recovery time, but this effect disappears if the flies are given 90 min recovery in air before chill coma induction. Flies treated with N(2) show a similar pattern, but require significantly longer chill coma recovery times even after 90 min of recovery from anoxia. Our results suggest that CO(2) anesthesia is an acceptable way to manipulate flies before cold tolerance experiments (when using RCH or chill coma recovery as a measure), provided exposure duration is minimized and recovery is permitted before chill coma induction. However, we recommend that exposure to N(2) not be used as a method of anesthesia for chill coma studies.

摘要

尽管最近的研究表明二氧化碳(CO₂)会改变行为和健康状况,但在许多实验室中,二氧化碳气体仍被用作昆虫麻醉剂。我们研究了CO₂和缺氧(N₂)对耐寒性的影响,测量了黑腹果蝇的快速冷驯化(RCH)反应和冷昏迷恢复情况。短时间暴露于CO₂或N₂对RCH没有显著影响,但暴露60分钟会使RCH消失。暴露于CO₂麻醉会增加冷昏迷恢复时间,但如果在诱导冷昏迷前让果蝇在空气中恢复90分钟,这种影响就会消失。用N₂处理的果蝇表现出类似的模式,但即使在缺氧恢复90分钟后,它们的冷昏迷恢复时间也明显更长。我们的结果表明,在耐寒性实验之前(当使用RCH或冷昏迷恢复作为衡量标准时),CO₂麻醉是一种可接受的处理果蝇的方法,前提是将暴露时间减至最短,并在诱导冷昏迷前允许恢复。然而,我们建议不要将暴露于N₂用作冷昏迷研究的麻醉方法。

相似文献

1
The effects of carbon dioxide anesthesia and anoxia on rapid cold-hardening and chill coma recovery in Drosophila melanogaster.
J Insect Physiol. 2006 Oct;52(10):1027-33. doi: 10.1016/j.jinsphys.2006.07.001. Epub 2006 Jul 27.
2
Brief carbon dioxide exposure blocks heat hardening but not cold acclimation in Drosophila melanogaster.
J Insect Physiol. 2008 Jan;54(1):32-40. doi: 10.1016/j.jinsphys.2007.08.001. Epub 2007 Aug 10.
3
Artificial selection on chill-coma recovery time in Drosophila melanogaster: Direct and correlated responses to selection.
J Therm Biol. 2016 Jul;59:77-85. doi: 10.1016/j.jtherbio.2016.04.004. Epub 2016 Apr 22.
6
Cold hardening modulates K+ homeostasis in the brain of Drosophila melanogaster during chill coma.
J Insect Physiol. 2012 Nov;58(11):1511-6. doi: 10.1016/j.jinsphys.2012.09.006. Epub 2012 Sep 24.
9
Complexity of the cold acclimation response in Drosophila melanogaster.
J Insect Physiol. 2006 Jan;52(1):94-104. doi: 10.1016/j.jinsphys.2005.09.007. Epub 2005 Oct 28.

引用本文的文献

1
A simple and dynamic thermal gradient device for measuring thermal performance in small ectotherms.
Curr Res Insect Sci. 2020 Dec 5;1:100005. doi: 10.1016/j.cris.2020.100005. eCollection 2021.
2
A lack of repeatability creates the illusion of a trade-off between basal and plastic cold tolerance.
Proc Biol Sci. 2021 Dec 8;288(1964):20212121. doi: 10.1098/rspb.2021.2121.
3
Exercise-induced changes in climbing performance.
R Soc Open Sci. 2021 Nov 10;8(11):211275. doi: 10.1098/rsos.211275. eCollection 2021 Nov.
5
Multigenerational experimental simulation of climate change on an economically important insect pest.
Ecol Evol. 2020 Oct 27;10(23):12893-12909. doi: 10.1002/ece3.6847. eCollection 2020 Dec.
6
7
Phenotypic plasticity, but not adaptive tracking, underlies seasonal variation in post-cold hardening freeze tolerance of .
Ecol Evol. 2019 Dec 6;10(1):217-231. doi: 10.1002/ece3.5887. eCollection 2020 Jan.
9
Role of Modified Atmosphere in Pest Control and Mechanism of Its Effect on Insects.
Front Physiol. 2019 Mar 12;10:206. doi: 10.3389/fphys.2019.00206. eCollection 2019.
10
Lack of aggression and apparent altruism towards intruders in a primitive termite.
R Soc Open Sci. 2016 Nov 9;3(11):160682. doi: 10.1098/rsos.160682. eCollection 2016 Nov.

本文引用的文献

3
A rapid cold-hardening process in insects.
Science. 1987 Dec 4;238(4832):1415-7. doi: 10.1126/science.238.4832.1415.
4
Changes in membrane lipid composition following rapid cold hardening in Drosophila melanogaster.
J Insect Physiol. 2005 Nov;51(11):1173-82. doi: 10.1016/j.jinsphys.2005.06.007. Epub 2005 Aug 19.
5
The physiological and behavioral effects of carbon dioxide on Drosophila melanogaster larvae.
Comp Biochem Physiol A Mol Integr Physiol. 2005 Mar;140(3):363-76. doi: 10.1016/j.cbpb.2005.01.019.
6
7
Anaesthetising Drosophila for behavioural studies.
J Insect Physiol. 2000 Apr;46(4):439-442. doi: 10.1016/s0022-1910(99)00129-8.
8
Chill-coma tolerance, a major climatic adaptation among Drosophila species.
Evolution. 2001 May;55(5):1063-8. doi: 10.1554/0014-3820(2001)055[1063:cctamc]2.0.co;2.
10
Flight muscle resting potential and species-specific differences in chill-coma.
J Insect Physiol. 2000 May 1;46(5):621-627. doi: 10.1016/s0022-1910(99)00148-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验