Tolmachov Oleg, Coutelle Charles
Section of Molecular and Cellular Medicine, Division of Biomedical Sciences, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, London SW7 2AZ, UK.
Med Hypotheses. 2007;68(2):328-31. doi: 10.1016/j.mehy.2006.06.055. Epub 2006 Sep 25.
The generation of synthetic therapeutic gene vectors requires the coupling of DNA to transfer-promoting peptides including cellular receptor ligands, protein transduction domains, hydrophobic peptides for attachment to lipid membranes, nuclear localisation signals, cytoskeleton attachment motifs, nuclear matrix association elements and immune evasion moieties. Existing methods of peptide-DNA joining often interfere with transgene expression and, therefore, are inadequate for production of effective therapeutic vector complexes, particularly destined for gene delivery in the challenging environment in vivo. However, there is a natural mechanism for rigid coupling of polypeptides with DNA. Some bacterial and eukaryotic linear plasmids, adenoviruses and a number of bacteriophages including phi29 of Bacillus subtilis and PRD1 of Escherichia coli use terminal proteins covalently bound to 5' DNA ends to prime replication. Inverted terminal DNA repeats, normally short DNA sequences, contain all the sequences required in cis for the covalent coupling reaction. The complex of the terminal protein, DNA polymerase and some known auxiliary proteins supplies sufficient trans-functions, thus enabling simple linking of the terminal proteins to DNA in vitro. We hypothesise that chimeric fusion proteins, constructed on the basis of terminal proteins of adenoviruses, linear plasmids or bacteriophages with protein-primed replication, can on the one hand retain the ability to bind covalently 5' DNA termini in conditions established previously for protein-primed replication in vitro, and on the other hand confer gene transfer facilitating properties and enhanced longevity of efficient transgene expression. Terminal localisation of the chimeric proteins can ensure that they do not interfere with transgene transcription. At the same time a covalent bond between polypeptide and DNA can provide rigid coupling ensuring their stable association en route to nuclei. Bound to 5'-ends of the delivered DNA, terminal protein-based chimeras could also protect the vector DNA from 5'-3' and possibly 3'-5' exonuclease attack, thus limiting its intracellular degradation and increasing longevity of transgene expression. Our hypothesis can be tested by measuring the gene transfer efficiency of the novel complexes containing linear DNA fragments with covalently linked multifunctional chimeric terminal proteins, using previously described synthetic gene vectors as standards.
合成治疗性基因载体的生成需要将DNA与促进转移的肽进行偶联,这些肽包括细胞受体配体、蛋白质转导结构域、用于附着于脂质膜的疏水肽、核定位信号、细胞骨架附着基序、核基质结合元件和免疫逃避部分。现有的肽-DNA连接方法常常会干扰转基因表达,因此不足以生产有效的治疗性载体复合物,尤其是在体内具有挑战性的环境中用于基因递送时。然而,存在一种多肽与DNA刚性偶联的天然机制。一些细菌和真核线性质粒、腺病毒以及许多噬菌体,包括枯草芽孢杆菌的phi29和大肠杆菌的PRD1,利用共价结合于5' DNA末端的末端蛋白来引发复制。反向末端DNA重复序列,通常是短DNA序列,包含共价偶联反应顺式所需的所有序列。末端蛋白、DNA聚合酶和一些已知辅助蛋白的复合物提供了足够的反式功能,从而能够在体外将末端蛋白简单地连接到DNA上。我们假设,基于腺病毒、线性质粒或具有蛋白引发复制功能的噬菌体的末端蛋白构建的嵌合融合蛋白,一方面能够在先前建立的体外蛋白引发复制条件下保留共价结合5' DNA末端的能力,另一方面能够赋予促进基因转移的特性并增强有效转基因表达的持久性。嵌合蛋白的末端定位可确保它们不会干扰转基因转录。同时,多肽与DNA之间的共价键可提供刚性偶联,确保它们在进入细胞核的过程中稳定结合。基于末端蛋白的嵌合体与递送的DNA的5' 末端结合,还可保护载体DNA免受5'-3' 以及可能的3'-5' 核酸外切酶的攻击,从而限制其细胞内降解并延长转基因表达的持久性。我们的假设可以通过使用先前描述的合成基因载体作为标准,测量含有共价连接多功能嵌合末端蛋白的线性DNA片段的新型复合物的基因转移效率来进行验证。