Suppr超能文献

构建并鉴定一种体内线性共价闭合 DNA 载体生产系统。

Construction and characterization of an in-vivo linear covalently closed DNA vector production system.

机构信息

School of Pharmacy, Faculty of Science, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.

出版信息

Microb Cell Fact. 2012 Dec 6;11:154. doi: 10.1186/1475-2859-11-154.

Abstract

BACKGROUND

While safer than their viral counterparts, conventional non-viral gene delivery DNA vectors offer a limited safety profile. They often result in the delivery of unwanted prokaryotic sequences, antibiotic resistance genes, and the bacterial origins of replication to the target, which may lead to the stimulation of unwanted immunological responses due to their chimeric DNA composition. Such vectors may also impart the potential for chromosomal integration, thus potentiating oncogenesis. We sought to engineer an in vivo system for the quick and simple production of safer DNA vector alternatives that were devoid of non-transgene bacterial sequences and would lethally disrupt the host chromosome in the event of an unwanted vector integration event.

RESULTS

We constructed a parent eukaryotic expression vector possessing a specialized manufactured multi-target site called "Super Sequence", and engineered E. coli cells (R-cell) that conditionally produce phage-derived recombinase Tel (PY54), TelN (N15), or Cre (P1). Passage of the parent plasmid vector through R-cells under optimized conditions, resulted in rapid, efficient, and one step in vivo generation of mini lcc--linear covalently closed (Tel/TelN-cell), or mini ccc--circular covalently closed (Cre-cell), DNA constructs, separated from the backbone plasmid DNA. Site-specific integration of lcc plasmids into the host chromosome resulted in chromosomal disruption and 10(5) fold lower viability than that seen with the ccc counterpart.

CONCLUSION

We offer a high efficiency mini DNA vector production system that confers simple, rapid and scalable in vivo production of mini lcc DNA vectors that possess all the benefits of "minicircle" DNA vectors and virtually eliminate the potential for undesirable vector integration events.

摘要

背景

虽然比病毒载体更安全,但传统的非病毒基因传递 DNA 载体的安全性有限。它们通常会导致不必要的原核序列、抗生素抗性基因和细菌复制起点被传递到靶标,这可能会由于其嵌合 DNA 组成而刺激不必要的免疫反应。这些载体还可能具有染色体整合的潜力,从而促进癌变。我们试图设计一种体内系统,快速简单地生产更安全的 DNA 载体替代品,这些替代品不含非转基因细菌序列,如果发生不必要的载体整合事件,将致命地破坏宿主染色体。

结果

我们构建了一个带有特殊制造的多靶点位点的亲本真核表达载体,称为“超级序列”,并设计了大肠杆菌细胞(R 细胞),这些细胞条件性地产生噬菌体衍生的重组酶 Tel(PY54)、TelN(N15)或 Cre(P1)。在优化条件下,亲本质粒载体通过 R 细胞传递,导致 mini lcc-线性共价闭合(Tel/TelN 细胞)或 mini ccc-环形共价闭合(Cre 细胞)DNA 构建体的快速、高效和一步体内产生,与骨干质粒 DNA 分离。lcc 质粒的特异性整合到宿主染色体中导致染色体断裂,与 ccc 对应物相比,存活能力降低 105 倍。

结论

我们提供了一种高效的 mini DNA 载体生产系统,该系统可简单、快速且可扩展地体内产生具有“minicircle”DNA 载体所有优势且几乎消除了不必要的载体整合事件可能性的 mini lcc DNA 载体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2835/3540006/c541f25299f1/1475-2859-11-154-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验