Suppr超能文献

将蛋白质实验压缩性分解为固有贡献和水化层贡献。

Decomposition of protein experimental compressibility into intrinsic and hydration shell contributions.

作者信息

Dadarlat Voichita M, Post Carol Beth

机构信息

Department of Medicinal Chemistry and Molecular Pharmacology, Markey Center for Structural Biology, Purdue Cancer Center, Purdue University, West Lafayette, IN, USA.

出版信息

Biophys J. 2006 Dec 15;91(12):4544-54. doi: 10.1529/biophysj.106.087726. Epub 2006 Sep 22.

Abstract

The experimental determination of protein compressibility reflects both the protein intrinsic compressibility and the difference between the compressibility of water in the protein hydration shell and bulk water. We use molecular dynamics simulations to explore the dependence of the isothermal compressibility of the hydration shell surrounding globular proteins on differential contributions from charged, polar, and apolar protein-water interfaces. The compressibility of water in the protein hydration shell is accounted for by a linear combination of contributions from charged, polar, and apolar solvent-accessible surfaces. The results provide a formula for the deconvolution of experimental data into intrinsic and hydration contributions when a protein of known structure is investigated. The physical basis for the model is the variation in water density shown by the surface-specific radial distribution functions of water molecules around globular proteins. The compressibility of water hydrating charged atoms is lower than bulk water compressibility, the compressibility of water hydrating apolar atoms is somewhat larger than bulk water compressibility, and the compressibility of water around polar atoms is about the same as the compressibility of bulk water. We also assess whether hydration water compressibility determined from small compound data can be used to estimate the compressibility of hydration water surrounding proteins. The results, based on an analysis from four dipeptide solutions, indicate that small compound data cannot be used directly to estimate the compressibility of hydration water surrounding proteins.

摘要

蛋白质压缩性的实验测定既反映了蛋白质的固有压缩性,也反映了蛋白质水化层中的水与本体水的压缩性差异。我们使用分子动力学模拟来探究球状蛋白质周围水化层的等温压缩性对带电、极性和非极性蛋白质 - 水界面的不同贡献的依赖性。蛋白质水化层中水的压缩性由带电、极性和非极性溶剂可及表面的贡献的线性组合来解释。当研究已知结构的蛋白质时,这些结果提供了一个将实验数据解卷积为固有贡献和水化贡献的公式。该模型的物理基础是球状蛋白质周围水分子的表面特异性径向分布函数所显示的水密度变化。与带电原子水化的水的压缩性低于本体水的压缩性,与非极性原子水化的水的压缩性略大于本体水的压缩性,而极性原子周围水的压缩性与本体水的压缩性大致相同。我们还评估了从小分子化合物数据确定的水化水压缩性是否可用于估计蛋白质周围水化水的压缩性。基于对四种二肽溶液的分析结果表明,小分子化合物数据不能直接用于估计蛋白质周围水化水的压缩性。

相似文献

1
Decomposition of protein experimental compressibility into intrinsic and hydration shell contributions.
Biophys J. 2006 Dec 15;91(12):4544-54. doi: 10.1529/biophysj.106.087726. Epub 2006 Sep 22.
4
Compressibility of the protein-water interface.
J Chem Phys. 2018 Jun 7;148(21):215102. doi: 10.1063/1.5026774.
5
7
Quantifying water density fluctuations and compressibility of hydration shells of hydrophobic solutes and proteins.
Phys Rev Lett. 2009 Jul 17;103(3):037803. doi: 10.1103/PhysRevLett.103.037803.
8
Hydrational and intrinsic compressibilities of globular proteins.
Biopolymers. 1993 Jan;33(1):11-26. doi: 10.1002/bip.360330103.

引用本文的文献

1
Hydrophobic Homopolymer's Coil-Globule Transition and Adsorption onto a Hydrophobic Surface under Different Conditions.
J Phys Chem B. 2023 Jun 29;127(25):5541-5552. doi: 10.1021/acs.jpcb.3c00937. Epub 2023 Jun 19.
2
Infinitely dilute partial molar properties of proteins from computer simulation.
J Phys Chem B. 2014 Nov 13;118(45):12844-54. doi: 10.1021/jp508632h. Epub 2014 Nov 3.
3
Local Fluctuations in Solution: Theory and Applications.
Adv Chem Phys. 2013;153:311-372. doi: 10.1002/9781118571767.ch4.
4
Voronoia4RNA--a database of atomic packing densities of RNA structures and their complexes.
Nucleic Acids Res. 2013 Jan;41(Database issue):D280-4. doi: 10.1093/nar/gks1061. Epub 2012 Nov 17.
5
Fluctuation theory of molecular association and conformational equilibria.
J Chem Phys. 2011 Jul 7;135(1):014502. doi: 10.1063/1.3601342.
8
Contribution of charged groups to the enthalpic stabilization of the folded states of globular proteins.
J Phys Chem B. 2008 May 15;112(19):6159-67. doi: 10.1021/jp077024d. Epub 2008 Feb 28.
9
Minimizing frustration by folding in an aqueous environment.
Arch Biochem Biophys. 2008 Jan 1;469(1):118-31. doi: 10.1016/j.abb.2007.07.007. Epub 2007 Jul 14.

本文引用的文献

1
Simulation studies of the protein-water interface. II. Properties at the mesoscopic resolution.
J Chem Phys. 2006 Jun 21;124(23):234908. doi: 10.1063/1.2198804.
2
Simulation studies of the protein-water interface. I. Properties at the molecular resolution.
J Chem Phys. 2006 Jun 21;124(23):234907. doi: 10.1063/1.2198802.
3
Water structure and interactions with protein surfaces.
Curr Opin Struct Biol. 2006 Apr;16(2):152-9. doi: 10.1016/j.sbi.2006.03.002. Epub 2006 Mar 20.
4
Compressibility changes accompanying conformational transitions of apomyoglobin.
Biopolymers. 2005 Nov;79(4):218-29. doi: 10.1002/bip.20350.
5
Potentials of mean force for the interaction of blocked alanine dipeptide molecules in water and gas phase from MD simulations.
Biophys J. 2005 Sep;89(3):1433-45. doi: 10.1529/biophysj.104.054130. Epub 2005 Jul 1.
6
Hydration dynamics near a model protein surface.
Biophys J. 2004 Mar;86(3):1852-62. doi: 10.1016/S0006-3495(04)74252-6.
7
Adhesive-cohesive model for protein compressibility: an alternative perspective on stability.
Proc Natl Acad Sci U S A. 2003 Dec 9;100(25):14778-83. doi: 10.1073/pnas.2434157100. Epub 2003 Nov 24.
9
Biomolecular hydration: from water dynamics to hydrodynamics.
Proc Natl Acad Sci U S A. 2003 Oct 14;100(21):12135-40. doi: 10.1073/pnas.2033320100. Epub 2003 Oct 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验