Suppr超能文献

根据105个原子分辨率晶体结构计算得出,蛋白质中的水化水和大量水在径向分布上具有不同的特性。

Hydration water and bulk water in proteins have distinct properties in radial distributions calculated from 105 atomic resolution crystal structures.

作者信息

Chen Xianfeng, Weber Irene, Harrison Robert W

机构信息

Department of Biology, Georgia State University, Atlanta, Georgia 30302-4010, USA.

出版信息

J Phys Chem B. 2008 Sep 25;112(38):12073-80. doi: 10.1021/jp802795a. Epub 2008 Aug 28.

Abstract

Water plays a critical role in the structure and function of proteins, although the experimental properties of water around protein structures are not well understood. The water can be classified by the separation from the protein surface into bulk water and hydration water. Hydration water interacts closely with the protein and contributes to protein folding, stability, and dynamics, as well as interacting with the bulk water. Water potential functions are often parametrized to fit bulk water properties because of the limited experimental data for hydration water. Therefore, the structural and energetic properties of the hydration water were assessed for 105 atomic resolution (<or=1.0 A) protein crystal structures with a high level of hydration water by calculating the experimental water-protein radial distribution function or surface distribution function (SDF) and water radial distribution function (RDF). Two maxima are observed in SDF: the first maximum at a radius of 2.75 A reflects first shell and hydrogen bond interactions between protein and water, and the second maximum at 3.65 A reflects second shell and van der Waals interactions between water and nonpolar atoms of protein-forming clathrate-hydrate-like structures. Thus, the two shells do not overlap. The RDF showed the features of liquid water rather than solid ice. The first and second maxima of RDF at 2.75 and 4.5 A, respectively, are the same as for bulk water, but the peaks are sharper, indicating hydration water is more stable than bulk water. Both distribution functions are inversely correlated with the distribution of B factors (atomic thermal factors) for the waters, suggesting that the maxima reflect stable positions. Therefore, the average water structure near the protein surface has experimentally observable differences from bulk water. This analysis will help improve the accuracy for models of water on the protein surface by providing rigorous data for the effects of the apparent chemical potential of the water near a protein surface.

摘要

水在蛋白质的结构和功能中起着关键作用,尽管围绕蛋白质结构的水的实验性质尚未得到很好的理解。水可根据与蛋白质表面的距离分为体相水和水化水。水化水与蛋白质紧密相互作用,有助于蛋白质折叠、稳定性和动力学,同时也与体相水相互作用。由于水化水的实验数据有限,水势函数通常根据体相水的性质进行参数化。因此,通过计算实验性的水 - 蛋白质径向分布函数或表面分布函数(SDF)以及水径向分布函数(RDF),对105个具有高水化水水平的原子分辨率(≤1.0 Å)蛋白质晶体结构的水化水的结构和能量性质进行了评估。在SDF中观察到两个最大值:第一个最大值出现在半径为2.75 Å处,反映了蛋白质与水之间的第一壳层和氢键相互作用;第二个最大值出现在3.65 Å处,反映了水与形成笼形水合物样结构的蛋白质非极性原子之间的第二壳层和范德华相互作用。因此,这两个壳层不重叠。RDF显示出液态水而非固态冰的特征。RDF的第一和第二最大值分别在2.75 Å和4.5 Å处,与体相水相同,但峰值更尖锐,表明水化水比体相水更稳定。这两个分布函数都与水的B因子(原子热因子)分布呈负相关,表明最大值反映了稳定位置。因此,蛋白质表面附近的平均水结构在实验上与体相水存在可观察到的差异。该分析将通过提供关于蛋白质表面附近水的表观化学势影响的严格数据,有助于提高蛋白质表面水模型的准确性。

相似文献

2
Shape dependence of the radial distribution function of hydration water around proteins.
J Phys Condens Matter. 2014 Aug 20;26(33):335102. doi: 10.1088/0953-8984/26/33/335102. Epub 2014 Jul 23.
3
Structure of hydration water in proteins: a comparison of molecular dynamics simulations and database analysis.
Biophys Chem. 2011 Sep;158(1):73-80. doi: 10.1016/j.bpc.2011.05.009. Epub 2011 May 27.
5
Modeling the hydration layer around proteins: HyPred.
Biophys J. 2010 Sep 8;99(5):1611-9. doi: 10.1016/j.bpj.2010.06.027.
8
Protein Solvent Shell Structure Provides Rapid Analysis of Hydration Dynamics.
J Chem Inf Model. 2019 May 28;59(5):2407-2422. doi: 10.1021/acs.jcim.9b00009. Epub 2019 Mar 22.
10
Decomposition of protein experimental compressibility into intrinsic and hydration shell contributions.
Biophys J. 2006 Dec 15;91(12):4544-54. doi: 10.1529/biophysj.106.087726. Epub 2006 Sep 22.

引用本文的文献

1
SuperWater: Predicting Water Molecule Positions on Protein Structures by Generative AI.
bioRxiv. 2024 Nov 20:2024.11.18.624208. doi: 10.1101/2024.11.18.624208.
2
Molecular Dynamic Simulations for Biopolymers with Biomedical Applications.
Polymers (Basel). 2024 Jun 29;16(13):1864. doi: 10.3390/polym16131864.
3
HydraProt: A New Deep Learning Tool for Fast and Accurate Prediction of Water Molecule Positions for Protein Structures.
J Chem Inf Model. 2024 Apr 8;64(7):2594-2611. doi: 10.1021/acs.jcim.3c01559. Epub 2024 Mar 29.
4
LAWS: Local alignment for water sites-Tracking ordered water in simulations.
Biophys J. 2023 Jul 25;122(14):2871-2883. doi: 10.1016/j.bpj.2022.09.012. Epub 2022 Sep 17.
6
Accelerated Vibrational Energy Relaxation of Water in Alkaline Environments.
J Phys Chem B. 2021 Nov 4;125(43):11980-11986. doi: 10.1021/acs.jpcb.1c02730. Epub 2021 Oct 21.
7
Micro-Aqueous Organic System: A Neglected Model in Computational Lipase Design?
Biomolecules. 2021 Jun 7;11(6):848. doi: 10.3390/biom11060848.
8
Structural and thermodynamic analysis of factors governing the stability and thermal folding/unfolding of SazCA.
PLoS One. 2021 Apr 15;16(4):e0249866. doi: 10.1371/journal.pone.0249866. eCollection 2021.
9
The Hydration Shell of Monomeric and Dimeric Insulin Studied by Terahertz Time-Domain Spectroscopy.
Biophys J. 2019 Aug 6;117(3):533-541. doi: 10.1016/j.bpj.2019.06.028. Epub 2019 Jul 3.
10
The impact of cryosolution thermal contraction on proteins and protein crystals: volumes, conformation and order.
Acta Crystallogr D Struct Biol. 2018 Sep 1;74(Pt 9):922-938. doi: 10.1107/S2059798318008793. Epub 2018 Sep 5.

本文引用的文献

2
Water structure around dipeptides in aqueous solutions.
Eur Biophys J. 2008 Jun;37(5):647-55. doi: 10.1007/s00249-008-0292-1. Epub 2008 Mar 11.
3
Ligand-protein docking with water molecules.
J Chem Inf Model. 2008 Feb;48(2):397-408. doi: 10.1021/ci700285e. Epub 2008 Jan 23.
4
An extended dynamical hydration shell around proteins.
Proc Natl Acad Sci U S A. 2007 Dec 26;104(52):20749-52. doi: 10.1073/pnas.0709207104. Epub 2007 Dec 19.
5
Solvated ensemble averaging in the calculation of partial atomic charges.
J Comput Chem. 2001 Aug;22(11):1125-37. doi: 10.1002/jcc.1072.
6
Verification of simple hydration/dehydration methods to characterize multiple water compartments on tendon type 1 collagen.
Cell Biol Int. 2007 Jun;31(6):531-9. doi: 10.1016/j.cellbi.2006.11.020. Epub 2006 Nov 28.
7
Decomposition of protein experimental compressibility into intrinsic and hydration shell contributions.
Biophys J. 2006 Dec 15;91(12):4544-54. doi: 10.1529/biophysj.106.087726. Epub 2006 Sep 22.
8
Water structure and interactions with protein surfaces.
Curr Opin Struct Biol. 2006 Apr;16(2):152-9. doi: 10.1016/j.sbi.2006.03.002. Epub 2006 Mar 20.
10
Ab initio potential energy and dipole moment surfaces of (H2O)2.
J Phys Chem A. 2006 Jan 19;110(2):445-51. doi: 10.1021/jp053583d.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验