Hazen Gordon B, Huang Min
IEMS Department, Northwestern University, Evanston, IL 60208-3119, USA.
Med Decis Making. 2006 Sep-Oct;26(5):512-34. doi: 10.1177/0272989X06290487.
In probabilistic sensitivity analyses, analysts assign probability distributions to uncertain model parameters and use Monte Carlo simulation to estimate the sensitivity of model results to parameter uncertainty. The authors present Bayesian methods for constructing large-sample approximate posterior distributions for probabilities, rates, and relative effect parameters, for both controlled and uncontrolled studies, and discuss how to use these posterior distributions in a probabilistic sensitivity analysis. These results draw on and extend procedures from the literature on large-sample Bayesian posterior distributions and Bayesian random effects meta-analysis. They improve on standard approaches to probabilistic sensitivity analysis by allowing a proper accounting for heterogeneity across studies as well as dependence between control and treatment parameters, while still being simple enough to be carried out on a spreadsheet. The authors apply these methods to conduct a probabilistic sensitivity analysis for a recently published analysis of zidovudine prophylaxis following rapid HIV testing in labor to prevent vertical HIV transmission in pregnant women.
在概率敏感性分析中,分析人员为不确定的模型参数分配概率分布,并使用蒙特卡罗模拟来估计模型结果对参数不确定性的敏感性。作者提出了贝叶斯方法,用于为对照研究和非对照研究构建概率、率和相对效应参数的大样本近似后验分布,并讨论了如何在概率敏感性分析中使用这些后验分布。这些结果借鉴并扩展了关于大样本贝叶斯后验分布和贝叶斯随机效应荟萃分析的文献中的程序。它们改进了概率敏感性分析的标准方法,通过适当考虑研究间的异质性以及对照参数和治疗参数之间的依赖性,同时仍然简单到足以在电子表格上进行。作者应用这些方法对最近发表的一项关于分娩时快速艾滋病毒检测后齐多夫定预防以防止孕妇垂直传播艾滋病毒的分析进行概率敏感性分析。