Suppr超能文献

一种用于II期临床试验的贝叶斯预测两阶段设计。

A Bayesian predictive two-stage design for phase II clinical trials.

作者信息

Sambucini Valeria

机构信息

Department of Statistics, Probability and Applied Statistics, University of Rome La Sapienza, Rome, Italy.

出版信息

Stat Med. 2008 Apr 15;27(8):1199-224. doi: 10.1002/sim.3021.

Abstract

In this paper, we propose a Bayesian two-stage design for phase II clinical trials, which represents a predictive version of the single threshold design (STD) recently introduced by Tan and Machin. The STD two-stage sample sizes are determined specifying a minimum threshold for the posterior probability that the true response rate exceeds a pre-specified target value and assuming that the observed response rate is slightly higher than the target. Unlike the STD, we do not refer to a fixed experimental outcome, but take into account the uncertainty about future data. In both stages, the design aims to control the probability of getting a large posterior probability that the true response rate exceeds the target value. Such a probability is expressed in terms of prior predictive distributions of the data. The performance of the design is based on the distinction between analysis and design priors, recently introduced in the literature. The properties of the method are studied when all the design parameters vary.

摘要

在本文中,我们提出了一种用于II期临床试验的贝叶斯两阶段设计,它是Tan和Machin最近提出的单阈值设计(STD)的一种预测版本。STD的两阶段样本量是通过指定真实反应率超过预先指定目标值的后验概率的最小阈值并假设观察到的反应率略高于目标来确定的。与STD不同,我们不参考固定的实验结果,而是考虑未来数据的不确定性。在两个阶段中,该设计旨在控制真实反应率超过目标值的后验概率较大的可能性。这样的概率是根据数据的先验预测分布来表示的。该设计的性能基于文献中最近引入的分析先验和设计先验之间的区别。当所有设计参数都变化时,研究了该方法的性质。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验