Suppr超能文献

信息性粗化离散事件时间数据的生存曲线估计

Survival curve estimation for informatively coarsened discrete event-time data.

作者信息

Shardell Michelle, Scharfstein Daniel O, Bozzette Samuel A

机构信息

Department of Epidemiology and Preventive Medicine, University of Maryland, Baltimore, MD 21201-1596, USA.

出版信息

Stat Med. 2007 May 10;26(10):2184-202. doi: 10.1002/sim.2697.

Abstract

Interval-censored, or more generally, coarsened event-time data arise when study participants are observed at irregular time periods and experience the event of interest in between study observations. Such data are often analysed assuming non-informative censoring, which can produce biased results if the assumption is wrong. This paper extends the standard approach for estimating survivor functions to allow informatively interval-censored data by incorporating various assumptions about the censoring mechanism into the model. We include a Bayesian extension in which final estimates are produced by mixing over a distribution of assumed censoring mechanisms. We illustrate these methods with a natural history study of HIV-infected individuals using assumptions elicited from an AIDS expert.

摘要

当在不规则的时间段观察研究参与者,并在研究观察期间发生感兴趣的事件时,就会出现区间删失数据,或者更一般地说,粗化事件时间数据。分析此类数据时通常假定为非信息删失,如果该假设错误,则可能产生有偏差的结果。本文扩展了估计生存函数的标准方法,通过将关于删失机制的各种假设纳入模型,以处理信息性区间删失数据。我们纳入了一种贝叶斯扩展方法,其中最终估计值是通过对假定的删失机制分布进行混合得到的。我们利用从一位艾滋病专家那里得到的假设,通过对感染艾滋病毒个体的自然史研究来说明这些方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验