Ghosh Pulak, Branco Marcia D, Chakraborty Hrishikesh
Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30303-3083, USA.
Stat Med. 2007 Mar 15;26(6):1255-67. doi: 10.1002/sim.2667.
Correlated data arise in a longitudinal studies from epidemiological and clinical research. Random effects models are commonly used to model correlated data. Mostly in the longitudinal data setting we assume that the random effects and within subject errors are normally distributed. However, the normality assumption may not always give robust results, particularly if the data exhibit skewness. In this paper, we develop a Bayesian approach to bivariate mixed model and relax the normality assumption by using a multivariate skew-normal distribution. Specifically, we compare various potential models and illustrate the procedure using a real data set from HIV study.
相关数据出现在流行病学和临床研究的纵向研究中。随机效应模型通常用于对相关数据进行建模。在纵向数据设置中,我们大多假设随机效应和个体内误差呈正态分布。然而,正态性假设可能并不总是能给出稳健的结果,特别是当数据呈现偏态时。在本文中,我们开发了一种用于双变量混合模型的贝叶斯方法,并通过使用多元斜正态分布来放宽正态性假设。具体来说,我们比较了各种潜在模型,并使用来自艾滋病毒研究的真实数据集来说明该过程。