Suppr超能文献

贝叶斯推断用于时间事件和纵向数据的 HIV 动力学联合模型,其中存在偏态和协变量测量误差。

Bayesian inference on joint models of HIV dynamics for time-to-event and longitudinal data with skewness and covariate measurement errors.

机构信息

Department of Epidemiology & Biostatistics, College of Public Health, University of South Florida, Tampa, FL 33612, USA.

出版信息

Stat Med. 2011 Oct 30;30(24):2930-46. doi: 10.1002/sim.4321. Epub 2011 Jul 31.

Abstract

Normality (symmetry) of the model random errors is a routine assumption for mixed-effects models in many longitudinal studies, but it may be unrealistically obscuring important features of subject variations. Covariates are usually introduced in the models to partially explain inter-subject variations, but some covariates such as CD4 cell count may be often measured with substantial errors. This paper formulates a class of models in general forms that considers model errors to have skew-normal distributions for a joint behavior of longitudinal dynamic processes and time-to-event process of interest. For estimating model parameters, we propose a Bayesian approach to jointly model three components (response, covariate, and time-to-event processes) linked through the random effects that characterize the underlying individual-specific longitudinal processes. We discuss in detail special cases of the model class, which are offered to jointly model HIV dynamic response in the presence of CD4 covariate process with measurement errors and time to decrease in CD4/CD8 ratio, to provide a tool to assess antiretroviral treatment and to monitor disease progression. We illustrate the proposed methods using the data from a clinical trial study of HIV treatment. The findings from this research suggest that the joint models with a skew-normal distribution may provide more reliable and robust results if the data exhibit skewness, and particularly the results may be important for HIV/AIDS studies in providing quantitative guidance to better understand the virologic responses to antiretroviral treatment.

摘要

模型随机误差的正态性(对称性)是许多纵向研究中混合效应模型的常规假设,但它可能不切实际地掩盖了主体变化的重要特征。协变量通常被引入模型中以部分解释主体间的变化,但一些协变量,如 CD4 细胞计数,可能经常存在大量误差。本文提出了一类模型,以一般形式考虑模型误差具有偏态正态分布,用于联合研究感兴趣的纵向动态过程和事件时间过程的行为。为了估计模型参数,我们提出了一种贝叶斯方法,通过随机效应联合建模三个组件(响应、协变量和事件时间过程),这些随机效应描述了潜在的个体特定纵向过程。我们详细讨论了模型类的特殊情况,这些情况被用来联合建模存在 CD4 协变量过程测量误差和 CD4/CD8 比值下降时间的 HIV 动态反应,为评估抗逆转录病毒治疗和监测疾病进展提供了一种工具。我们使用 HIV 治疗临床试验研究的数据说明了所提出的方法。研究结果表明,如果数据呈现偏态,具有偏态正态分布的联合模型可能会提供更可靠和稳健的结果,特别是对于 HIV/AIDS 研究,为更好地理解抗逆转录病毒治疗的病毒学反应提供定量指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验