Spoonamore James E, Dahlgran Annie L, Jacobsen Neil E, Bandarian Vahe
Department of Biochemistry and Molecular Biophysics, University of Arizona, 1041 East Lowell Street, Tucson, Arizona 85721, USA.
Biochemistry. 2006 Oct 3;45(39):12144-55. doi: 10.1021/bi061005x.
The genome sequence of Streptomyces coelicolor contains three open reading frames (sco1441, sco2687, and sco6655) that encode proteins with significant (>40%) amino acid identity to GTP cyclohydrolase II (GCH II), which catalyzes the committed step in the biosynthesis of riboflavin. The physiological significance of the redundancy of these proteins in S. coelicolor is not known. However, the gene contexts of the three proteins are different, suggesting that they may serve alternate biological niches. Each of the three proteins was overexpressed in Escherichia coli and characterized to determine if their functions are biologically overlapping. As purified, each protein contains 1 molar equiv of zinc/mol of protein and utilizes guanosine 5'-triphosphate (GTP) as substrate. Two of these proteins (SCO 1441 and SCO 2687) produce the canonical product of GCH II, 2,5-diamino-6-ribosylamino-4(3H)-pyrimidinone 5'-phosphate (APy). Remarkably, however, one of the three proteins (SCO 6655) converts GTP to 2-amino-5-formylamino-6-ribosylamino-4(3H)-pyrimidinone 5'-phosphate (FAPy), as shown by UV-visible spectrophotometry, mass spectrometry, and NMR. This activity has been reported for a GTP cyclohydrolase III protein from Methanocaldococcus jannaschii [Graham, D. E., Xu, H., and White, R. H. (2002) Biochemistry 41, 15074-15084], which has no amino acid sequence homology to SCO 6655. Comparison of the sequences of these proteins and mapping onto the structure of the E. coli GCH II protein [Ren, J., Kotaka, M., Lockyer, M., Lamb, H. K., Hawkins, A. R., and Stammers, D. K. (2005) J. Biol. Chem. 280, 36912-36919] allowed identification of a switch residue, Met120, which appears to be responsible for the altered fate of GTP observed with SCO 6655; a Tyr is found in the analogous position of all proteins that have been shown to catalyze the conversion of GTP to APy. The Met120Tyr variant of SCO 6655 acquires the ability to catalyze the conversion of GTP to APy, suggesting a role for Tyr120 in the late phase of the reaction. Our data are consistent with duplication of GCH II in S. coelicolor promoting evolution of a new function. The physiological role(s) of the gene clusters that house GCH II homologues will be discussed.
天蓝色链霉菌的基因组序列包含三个开放阅读框(sco1441、sco2687和sco6655),它们编码的蛋白质与鸟苷三磷酸环化水解酶II(GCH II)具有显著的(>40%)氨基酸同一性,GCH II催化核黄素生物合成中的关键步骤。这些蛋白质在天蓝色链霉菌中冗余的生理意义尚不清楚。然而,这三种蛋白质的基因背景不同,表明它们可能服务于不同的生物学生态位。这三种蛋白质都在大肠杆菌中过表达并进行了表征,以确定它们的功能是否在生物学上重叠。纯化后的每种蛋白质每摩尔蛋白质含有1摩尔当量的锌,并利用鸟苷5'-三磷酸(GTP)作为底物。其中两种蛋白质(SCO 1441和SCO 2687)产生GCH II的典型产物2,5-二氨基-6-核糖基氨基-4(3H)-嘧啶酮5'-磷酸(APy)。然而,值得注意的是,这三种蛋白质中的一种(SCO 6655)将GTP转化为2-氨基-5-甲酰氨基-6-核糖基氨基-4(3H)-嘧啶酮5'-磷酸(FAPy),紫外可见分光光度法、质谱和核磁共振显示了这一点。詹氏甲烷球菌的一种鸟苷三磷酸环化水解酶III蛋白也有这种活性[格雷厄姆,D.E.,徐,H.,怀特,R.H.(2002年)《生物化学》41卷,15074 - 15084页],它与SCO 6655没有氨基酸序列同源性。对这些蛋白质的序列进行比较并映射到大肠杆菌GCH II蛋白的结构上[任,J.,小鹰,M.,洛克耶,M.,兰姆,H.K.,霍金斯,A.R.,斯塔默斯,D.K.(2005年)《生物化学杂志》280卷,36912 - 36919页],发现了一个开关残基Met120,它似乎是导致SCO 6655中GTP命运改变的原因;在所有已被证明能催化GTP转化为APy的蛋白质的类似位置都发现了一个酪氨酸。SCO 6655的Met120Tyr变体获得了催化GTP转化为APy的能力,这表明Tyr120在反应后期起作用。我们的数据与天蓝色链霉菌中GCH II的复制促进新功能的进化一致。将讨论包含GCH II同源物的基因簇的生理作用。