Basdevant Nathalie, Weinstein Harel, Ceruso Marco
Department of Chemistry, CUNY College of Staten Island, 2800 Victory Boulevard, Staten Island, NY 10314, USA.
J Am Chem Soc. 2006 Oct 4;128(39):12766-77. doi: 10.1021/ja060830y.
Like other protein-protein interaction domains, PDZ domains are involved in many key cellular processes. These processes often require that specific multiprotein complexes be assembled, a task that PDZ domains accomplish by binding to specific peptide motifs in target proteins. However, a growing number of experimental studies show that PDZ domains (like other protein-protein interaction domains) can engage in a variety of interactions and bind distinct peptide motifs. Such promiscuity in ligand recognition raises intriguing questions about the molecular and thermodynamic mechanisms that can sustain it. To identify possible sources of promiscuity and selectivity underlying PDZ domain interactions, we performed molecular dynamics simulations of 20 to 25 ns on a set of 12 different PDZ domain complexes (for the proteins PSD-95, Syntenin, Erbin, GRIP, NHERF, Inad, Dishevelled, and Shank). The electrostatic, nonpolar, and configurational entropy binding contributions were evaluated using the MM/PBSA method combined with a quasi-harmonic analysis. The results revealed that PDZ domain interactions are characterized by overwhelmingly favorable nonpolar contributions and almost negligible electrostatic components, a mix that may readily sustain promiscuity. In addition, despite the structural similarity in fold and in recognition modes, the entropic and other dynamical aspects of binding were remarkably variable not only across PDZ domains but also for the same PDZ domain bound to distinct ligands. This variability suggests that entropic and dynamical components can play a role in determining selectivity either of PDZ domain interactions with peptide ligands or of PDZ domain complexes with downstream effectors.
与其他蛋白质-蛋白质相互作用结构域一样,PDZ结构域参与许多关键的细胞过程。这些过程通常需要组装特定的多蛋白复合物,而PDZ结构域通过与靶蛋白中的特定肽基序结合来完成这项任务。然而,越来越多的实验研究表明,PDZ结构域(与其他蛋白质-蛋白质相互作用结构域一样)可以参与多种相互作用并结合不同的肽基序。这种配体识别的混杂性引发了关于能够维持它的分子和热力学机制的有趣问题。为了确定PDZ结构域相互作用背后混杂性和选择性的可能来源,我们对一组12种不同的PDZ结构域复合物(针对蛋白质PSD-95、Syntenin、Erbin、GRIP、NHERF、Inad、Dishevelled和Shank)进行了20至25纳秒的分子动力学模拟。使用MM/PBSA方法结合准谐波分析评估了静电、非极性和构象熵结合贡献。结果表明,PDZ结构域相互作用的特征是压倒性的有利非极性贡献和几乎可以忽略不计的静电力成分,这种组合可能很容易维持混杂性。此外,尽管在折叠和识别模式上结构相似,但结合的熵和其他动力学方面不仅在不同的PDZ结构域之间,而且对于与不同配体结合的相同PDZ结构域都有显著差异。这种变异性表明,熵和动力学成分可以在决定PDZ结构域与肽配体相互作用的选择性或PDZ结构域与下游效应器复合物的选择性方面发挥作用。