Stern Jennifer C, Chanton Jeff, Abichou Tarek, Powelson David, Yuan Lei, Escoriza Sharon, Bogner Jean
Department of Oceanography, Florida State University, Tallahassee, FL 32306-4320, USA.
Waste Manag. 2007;27(9):1248-58. doi: 10.1016/j.wasman.2006.07.018. Epub 2006 Sep 26.
Biologically-active landfill cover soils (biocovers) that serve to minimize CH4 emissions by optimizing CH4 oxidation were investigated at a landfill in Florida, USA. The biocover consisted of 50 cm pre-composted yard or garden waste placed over a 10-15 cm gas distribution layer (crushed glass) over a 40-100 cm interim cover. The biocover cells reduced CH4 emissions by a factor of 10 and doubled the percentage of CH4 oxidation relative to control cells. The thickness and moisture-holding capacity of the biocover resulted in increased retention times for transported CH4. This increased retention of CH4 in the biocover resulted in a higher fraction oxidized. Overall rates between the two covers were similar, about 2g CH4 m(-2)d(-1), but because CH4 entered the biocover from below at a slower rate relative to the soil cover, a higher percentage was oxidized. In part, methane oxidation controlled the net flux of CH4 to the atmosphere. The biocover cells became more effective than the control sites in oxidizing CH4 3 months after their initial placement: the mean percent oxidation for the biocover cells was 41% compared to 14% for the control cells (p<0.001). Following the initial 3 months, we also observed 29 (27%) negative CH4 fluxes and 27 (25%) zero fluxes in the biocover cells but only 6 (6%) negative fluxes and 22 (21%) zero fluxes for the control cells. Negative fluxes indicate uptake of atmospheric CH4. If the zero and negative fluxes are assumed to represent 100% oxidation, then the mean percent oxidation for the biocover and control cells, respectively, for the same period would increase to 64% and 30%.
在美国佛罗里达州的一个垃圾填埋场,对通过优化甲烷氧化来减少甲烷排放的生物活性垃圾填埋覆盖土壤(生物覆盖层)进行了研究。生物覆盖层由50厘米预先堆肥的庭院或花园废物组成,放置在10 - 15厘米的气体分布层(碎玻璃)之上,气体分布层又位于40 - 100厘米的临时覆盖层之上。与对照单元相比,生物覆盖单元将甲烷排放量降低了10倍,并使甲烷氧化百分比增加了一倍。生物覆盖层的厚度和持水能力导致传输的甲烷保留时间增加。生物覆盖层中甲烷保留时间的增加导致更高比例的甲烷被氧化。两种覆盖层的总体速率相似,约为2克甲烷每平方米每天,但由于甲烷相对于土壤覆盖层以较慢的速率从下方进入生物覆盖层,被氧化的百分比更高。在一定程度上,甲烷氧化控制了甲烷向大气的净通量。生物覆盖单元在最初放置3个月后比对照位点在氧化甲烷方面更有效:生物覆盖单元的平均氧化百分比为41%,而对照单元为14%(p<0.001)。在最初的3个月之后,我们还观察到生物覆盖单元中有29次(27%)负甲烷通量和27次(25%)零通量,但对照单元中只有6次(6%)负通量和22次(21%)零通量。负通量表明大气中的甲烷被吸收。如果假设零通量和负通量代表100%氧化,那么同一时期生物覆盖单元和对照单元的平均氧化百分比将分别增加到64%和30%。