Suppr超能文献

用于预测二面角区域的支持向量机

Support vector machines for prediction of dihedral angle regions.

作者信息

Zimmermann Olav, Hansmann Ulrich H E

机构信息

John v. Neumann Institute for Computing, FZ Jülich, 52425 Jülich, Germany.

出版信息

Bioinformatics. 2006 Dec 15;22(24):3009-15. doi: 10.1093/bioinformatics/btl489. Epub 2006 Sep 27.

Abstract

MOTIVATION

Most secondary structure prediction programs target only alpha helix and beta sheet structures and summarize all other structures in the random coil pseudo class. However, such an assignment often ignores existing local ordering in so-called random coil regions. Signatures for such ordering are distinct dihedral angle pattern. For this reason, we propose as an alternative approach to predict directly dihedral regions for each residue as this leads to a higher amount of structural information.

RESULTS

We propose a multi-step support vector machine (SVM) procedure, dihedral prediction (DHPRED), to predict the dihedral angle state of residues from sequence. Trained on 20,000 residues our approach leads to dihedral region predictions, that in regions without alpha helices or beta sheets is higher than those from secondary structure prediction programs.

AVAILABILITY

DHPRED has been implemented as a web service, which academic researchers can access from our webpage http://www.fz-juelich.de/nic/cbb

摘要

动机

大多数二级结构预测程序仅针对α螺旋和β折叠结构,并将所有其他结构归纳到随机卷曲伪类别中。然而,这种归类常常忽略了所谓随机卷曲区域中现有的局部有序性。这种有序性的特征是独特的二面角模式。因此,我们提出一种替代方法,直接预测每个残基的二面角区域,因为这会带来更多的结构信息。

结果

我们提出了一种多步支持向量机(SVM)程序——二面角预测(DHPRED),用于从序列预测残基的二面角状态。在20000个残基上进行训练后,我们的方法能够进行二面角区域预测,在没有α螺旋或β折叠的区域,其预测结果优于二级结构预测程序。

可用性

DHPRED已作为一个网络服务实现,学术研究人员可以从我们的网页http://www.fz-juelich.de/nic/cbb访问。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验