Suppr超能文献

蛋白质二面角预测方法的评估。

Evaluation of protein dihedral angle prediction methods.

作者信息

Singh Harinder, Singh Sandeep, Raghava Gajendra P S

机构信息

Bioinformatics Center, Institute of Microbial Technology, Chandigarh, India.

出版信息

PLoS One. 2014 Aug 28;9(8):e105667. doi: 10.1371/journal.pone.0105667. eCollection 2014.

Abstract

Tertiary structure prediction of a protein from its amino acid sequence is one of the major challenges in the field of bioinformatics. Hierarchical approach is one of the persuasive techniques used for predicting protein tertiary structure, especially in the absence of homologous protein structures. In hierarchical approach, intermediate states are predicted like secondary structure, dihedral angles, Cα-Cα distance bounds, etc. These intermediate states are used to restraint the protein backbone and assist its correct folding. In the recent years, several methods have been developed for predicting dihedral angles of a protein, but it is difficult to conclude which method is better than others. In this study, we benchmarked the performance of dihedral prediction methods ANGLOR and SPINE X on various datasets, including independent datasets. TANGLE dihedral prediction method was not benchmarked (due to unavailability of its standalone) and was compared with SPINE X and ANGLOR on only ANGLOR dataset on which TANGLE has reported its results. It was observed that SPINE X performed better than ANGLOR and TANGLE, especially in case of prediction of dihedral angles of glycine and proline residues. The analysis suggested that angle shifting was the foremost reason of better performance of SPINE X. We further evaluated the performance of the methods on independent ccPDB30 dataset and observed that SPINE X performed better than ANGLOR.

摘要

从氨基酸序列预测蛋白质的三级结构是生物信息学领域的主要挑战之一。分层方法是用于预测蛋白质三级结构的有说服力的技术之一,特别是在没有同源蛋白质结构的情况下。在分层方法中,会预测中间状态,如二级结构、二面角、Cα - Cα距离界限等。这些中间状态用于约束蛋白质主链并协助其正确折叠。近年来,已经开发了几种预测蛋白质二面角的方法,但很难断定哪种方法比其他方法更好。在本研究中,我们在包括独立数据集在内的各种数据集上对二面角预测方法ANGLOR和SPINE X的性能进行了基准测试。TANGLE二面角预测方法未进行基准测试(由于其独立版本不可用),并且仅在TANGLE报告了其结果的ANGLOR数据集上与SPINE X和ANGLOR进行了比较。据观察,SPINE X的性能优于ANGLOR和TANGLE,尤其是在预测甘氨酸和脯氨酸残基的二面角时。分析表明,角度偏移是SPINE X性能更好的首要原因。我们进一步在独立的ccPDB30数据集上评估了这些方法的性能,发现SPINE X的性能优于ANGLOR。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/047b/4148315/0aa0575957fe/pone.0105667.g001.jpg

相似文献

1
Evaluation of protein dihedral angle prediction methods.
PLoS One. 2014 Aug 28;9(8):e105667. doi: 10.1371/journal.pone.0105667. eCollection 2014.
3
ANGLOR: a composite machine-learning algorithm for protein backbone torsion angle prediction.
PLoS One. 2008;3(10):e3400. doi: 10.1371/journal.pone.0003400. Epub 2008 Oct 15.
5
Prediction of backbone dihedral angles and protein secondary structure using support vector machines.
BMC Bioinformatics. 2009 Dec 22;10:437. doi: 10.1186/1471-2105-10-437.
7
Full cyclic coordinate descent: solving the protein loop closure problem in Calpha space.
BMC Bioinformatics. 2005 Jun 28;6:159. doi: 10.1186/1471-2105-6-159.
8
Backbone Dihedral Angle Prediction.
Methods Mol Biol. 2017;1484:65-82. doi: 10.1007/978-1-4939-6406-2_7.
9
Predicting beta-turns and their types using predicted backbone dihedral angles and secondary structures.
BMC Bioinformatics. 2010 Jul 31;11:407. doi: 10.1186/1471-2105-11-407.
10
Protein structure prediction enhanced with evolutionary diversity: SPEED.
Protein Sci. 2010 Mar;19(3):520-34. doi: 10.1002/pro.330.

引用本文的文献

1
DCMA: faster protein backbone dihedral angle prediction using a dilated convolutional attention-based neural network.
Front Bioinform. 2024 Oct 18;4:1477909. doi: 10.3389/fbinf.2024.1477909. eCollection 2024.
2
TEMPRO: nanobody melting temperature estimation model using protein embeddings.
Sci Rep. 2024 Aug 17;14(1):19074. doi: 10.1038/s41598-024-70101-6.
3
SARS-CoV-2 Spike Protein Interaction Space.
Int J Mol Sci. 2023 Jul 27;24(15):12058. doi: 10.3390/ijms241512058.
6
Deep learning methods for protein torsion angle prediction.
BMC Bioinformatics. 2017 Sep 18;18(1):417. doi: 10.1186/s12859-017-1834-2.
7
Sixty-five years of the long march in protein secondary structure prediction: the final stretch?
Brief Bioinform. 2018 May 1;19(3):482-494. doi: 10.1093/bib/bbw129.
8
Integrated Strategy Improves the Prediction Accuracy of miRNA in Large Dataset.
PLoS One. 2016 Dec 21;11(12):e0168392. doi: 10.1371/journal.pone.0168392. eCollection 2016.

本文引用的文献

1
Template-based protein structure modeling using the RaptorX web server.
Nat Protoc. 2012 Jul 19;7(8):1511-22. doi: 10.1038/nprot.2012.085.
3
ccPDB: compilation and creation of data sets from Protein Data Bank.
Nucleic Acids Res. 2012 Jan;40(Database issue):D486-9. doi: 10.1093/nar/gkr1150. Epub 2011 Dec 1.
5
Structural protein descriptors in 1-dimension and their sequence-based predictions.
Curr Protein Pept Sci. 2011 Sep;12(6):470-89. doi: 10.2174/138920311796957711.
7
Predicting beta-turns and their types using predicted backbone dihedral angles and secondary structures.
BMC Bioinformatics. 2010 Jul 31;11:407. doi: 10.1186/1471-2105-11-407.
8
Prediction of beta-hairpins in proteins using physicochemical properties and structure information.
Protein Pept Lett. 2010 Sep;17(9):1123-8. doi: 10.2174/092986610791760333.
9
I-TASSER: a unified platform for automated protein structure and function prediction.
Nat Protoc. 2010 Apr;5(4):725-38. doi: 10.1038/nprot.2010.5. Epub 2010 Mar 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验