Iwamoto Hideki, Blakely Randy D, De Felice Louis J
Department of Pharmacology and Center for Molecular Neuroscience, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8548, USA.
J Neurosci. 2006 Sep 27;26(39):9851-9. doi: 10.1523/JNEUROSCI.1862-06.2006.
The recent cloning of the human choline transporter (hCHT) has allowed its expression in Xenopus laevis oocytes and the simultaneous measurement of choline transport and choline-induced current under voltage clamp. hCHT currents and choline transport are evident in cRNA-injected oocytes and significantly enhanced by the hCHT trafficking mutant L530A/V531A. The charge/choline ratio of hCHT varies from 10e/choline at -80 mV to 3e/choline at -20 mV, in contrast with the reported fixed stoichiometry of the Na+-coupled glucose transporter in the same gene family. Ion substitution shows that the choline uptake and choline-induced current are Na+ and Cl- dependent; however, the reversal potential of the induced current suggests a Na+-selective mechanism, consigning Cl- to a regulatory role rather than a coupled, cotransported-ion role. The hCHT-specific inhibitor hemicholinium-3 (HC-3) blocks choline uptake and choline-induced current; in addition, HC-3 alone reveals a constitutive, depolarizing leak current through hCHT. We show that external protons reduce hCHT current, transport, and binding with a similar pKa of 7.4, suggesting proton titration of residue(s) that support choline binding and transport. Given the localization of the choline transporter to synaptic vesicles, we propose that proton inactivation of hCHT prevents acetylcholine and proton leakage from the acidic interior of cholinergic synaptic vesicles. This mechanism would allow cholinergic, activity-triggered delivery of silent choline transporters to the plasma membrane, in which normal pH would reactivate the transporters for choline uptake and subsequent acetylcholine synthesis.
近期人类胆碱转运体(hCHT)的克隆使得其能够在非洲爪蟾卵母细胞中表达,并且可以在电压钳制下同时测量胆碱转运和胆碱诱导电流。在注射了cRNA的卵母细胞中可明显检测到hCHT电流和胆碱转运,并且hCHT转运突变体L530A/V531A可显著增强这一现象。hCHT的电荷/胆碱比在-80 mV时为10e/胆碱,在-20 mV时为3e/胆碱,这与同一基因家族中报道的钠耦联葡萄糖转运体固定化学计量比不同。离子置换表明,胆碱摄取和胆碱诱导电流依赖于Na⁺和Cl⁻;然而,诱导电流的反转电位表明存在一种Na⁺选择性机制,使Cl⁻起到调节作用而非耦联共转运离子的作用。hCHT特异性抑制剂半胱氨酸-3(HC-3)可阻断胆碱摄取和胆碱诱导电流;此外,单独使用HC-3时可揭示出通过hCHT的组成性去极化泄漏电流。我们发现,外部质子以相似的7.4的pKa降低hCHT电流、转运和结合,这表明支持胆碱结合和转运的残基发生了质子滴定。鉴于胆碱转运体定位于突触小泡,我们提出hCHT的质子失活可防止乙酰胆碱和质子从胆碱能突触小泡的酸性内部泄漏。这种机制将允许胆碱能活性触发的沉默胆碱转运体向质膜的递送,在质膜中正常pH会重新激活转运体以摄取胆碱并随后合成乙酰胆碱。