Suppr超能文献

GAT1(γ-氨基丁酸:钠离子:氯离子)协同转运功能。非洲爪蟾卵母细胞膜片的动力学研究。

GAT1 (GABA:Na+:Cl-) cotransport function. Kinetic studies in giant Xenopus oocyte membrane patches.

作者信息

Lu C C, Hilgemann D W

机构信息

Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75235-9040, USA.

出版信息

J Gen Physiol. 1999 Sep;114(3):445-57. doi: 10.1085/jgp.114.3.445.

Abstract

To explain cotransport function, the "alternating access" model requires that conformational changes of the empty transporter allow substrates to bind alternatively on opposite membrane sides. To test this principle for the GAT1 (GABA:Na+:Cl-) cotransporter, we have analyzed how its charge-moving partial reactions depend on substrates on both membrane sides in giant Xenopus oocyte membrane patches. (a) "Slow" charge movements, which require extracellular Na+ and probably reflect occlusion of Na+ by GAT1, were defined in three ways with similar results: by application of the high-affinity GAT1 blocker (NO-711), by application of a high concentration (120 mM) of cytoplasmic Cl-, and by removal of extracellular Na+ via pipette perfusion. (b) Three results indicate that cytoplasmic Cl- and extracellular Na+ bind to the transporter in a mutually exclusive fashion: first, cytoplasmic Cl- (5-140 mM) shifts the voltage dependence of the slow charge movement to more negative potentials, specifically by slowing its "forward" rate (i.e., extracellular Na+ occlusion); second, rapid application of cytoplasmic Cl- induces an outward current transient that requires extracellular Na+, consistent with extracellular Na+ being forced out of its binding site; third, fast charge-moving reactions, which can be monitored as a capacitance, are "immobilized" both by cytoplasmic Cl- binding and by extracellular Na+ occlusion (i.e., by the slow charge movement). (c) In the absence of extracellular Na+, three fast (submillisecond) charge movements have been identified, but no slow components. The addition of cytoplasmic Cl- suppresses two components (tau < 1 ms and 13 micros) and enables a faster component (tau < 1 micros). (d) We failed to identify charge movements of fully loaded GAT1 transporters (i.e., with all substrates on both sides). (e) Under zero-trans conditions, inward (forward) GAT1 current shows pronounced pre-steady state transients, while outward (reverse) GAT1 current does not. (f) Turnover rates for reverse GAT1 transport (33 degrees C), calculated from the ratio of steady state current magnitude to total charge movement magnitude, can exceed 60 s(-1) at positive potentials.

摘要

为了解释协同转运功能,“交替访问”模型要求空转运体的构象变化允许底物在相对的膜两侧交替结合。为了在GAT1(γ-氨基丁酸:钠离子:氯离子)协同转运体上验证这一原理,我们分析了其电荷移动部分反应如何依赖于非洲爪蟾卵母细胞巨大膜片两侧的底物。(a)“缓慢”电荷移动需要细胞外钠离子,可能反映了GAT1对钠离子的封闭作用,通过三种方式定义,结果相似:应用高亲和力GAT1阻滞剂(NO-711)、应用高浓度(120 mM)的细胞质氯离子以及通过移液管灌注去除细胞外钠离子。(b)三个结果表明细胞质氯离子和细胞外钠离子以互斥方式结合到转运体上:第一,细胞质氯离子(5 - 140 mM)将缓慢电荷移动的电压依赖性转移到更负的电位,特别是通过减慢其“正向”速率(即细胞外钠离子封闭);第二,快速施加细胞质氯离子会诱导一个需要细胞外钠离子的外向电流瞬变,这与细胞外钠离子被挤出其结合位点一致;第三,可作为电容监测的快速电荷移动反应,会因细胞质氯离子结合和细胞外钠离子封闭(即缓慢电荷移动)而“固定”。(c)在没有细胞外钠离子的情况下,已鉴定出三种快速(亚毫秒级)电荷移动,但没有缓慢成分。添加细胞质氯离子会抑制两种成分(时间常数τ < 1 ms和13 μs),并使一种更快的成分(时间常数τ < 1 μs)出现。(d)我们未能鉴定出完全装载的GAT1转运体(即两侧都有所有底物)的电荷移动。(e)在零转运条件下,内向(正向)GAT1电流显示出明显的预稳态瞬变,而外向(反向)GAT1电流则没有。(f)根据稳态电流大小与总电荷移动大小的比值计算出的反向GAT1转运(33摄氏度)的周转率,在正电位下可超过60 s⁻¹。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/448d/2229455/72f2e995fb9e/JGP7819.s1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验