Lu C C, Hilgemann D W
Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75235-9040, USA.
J Gen Physiol. 1999 Sep;114(3):429-44. doi: 10.1085/jgp.114.3.429.
Neurotransmitter transporters are reported to mediate transmembrane ion movements that are poorly coupled to neurotransmitter transport and to exhibit complex "channel-like" behaviors that challenge the classical "alternating access" transport model. To test alternative models, and to develop an improved model for the Na+- and Cl--dependent gamma-aminobutyric acid (GABA) transporter, GAT1, we expressed GAT1 in Xenopus oocytes and analyzed its function in detail in giant membrane patches. We detected no Na+- or Cl--dependent currents in the absence of GABA, nor did we detect activating effects of substrates added to the trans side. Outward GAT1 current ("reverse" transport mode) requires the presence of all three substrates on the cytoplasmic side. Inward GAT1 current ("forward" transport mode) can be partially activated by GABA and Na+ on the extracellular (pipette) side in the nominal absence of Cl-. With all three substrates on both membrane sides, reversal potentials defined with specific GAT1 inhibitors are consistent with the proposed stoichiometry of 1GABA:2Na+:1Cl-. As predicted for the "alternating access" model, addition of a substrate to the trans side (120 mM extracellular Na+) decreases the half-maximal concentration for activation of current by a substrate on the cis side (cytoplasmic GABA). In the presence of extracellular Na+, the half-maximal cytoplasmic GABA concentration is increased by decreasing cytoplasmic Cl-. In the absence of extracellular Na+, half-maximal cytoplasmic substrate concentrations (8 mM Cl-, 2 mM GABA, 60 mM Na+) do not change when cosubstrate concentrations are reduced, with the exception that reducing cytoplasmic Cl- increases the half-maximal cytoplasmic Na+ concentration. The forward GAT1 current (i.e., inward current with all extracellular substrates present) is inhibited monotonically by cytoplasmic Cl- (Ki, 8 mM); cytoplasmic Na+ and cytoplasmic GABA are without effect in the absence of cytoplasmic Cl-. In the absence of extracellular Na+, current-voltage relations for reverse transport current (i.e., outward current with all cytoplasmic substrates present) can be approximated by shallow exponential functions whose slopes are consistent with rate-limiting steps moving 0.15-0.3 equivalent charges. The slopes of current-voltage relations change only little when current is reduced four- to eightfold by lowering each cosubstrate concentration; they increase twofold upon addition of 100 mM Na+ to the extracellular (pipette) side.
据报道,神经递质转运体介导的跨膜离子运动与神经递质转运的偶联性较差,并表现出复杂的“通道样”行为,这对经典的“交替访问”转运模型提出了挑战。为了测试替代模型,并为依赖于Na⁺和Cl⁻的γ-氨基丁酸(GABA)转运体GAT1开发一个改进模型,我们在非洲爪蟾卵母细胞中表达了GAT1,并在巨膜片上详细分析了其功能。在没有GABA的情况下,我们未检测到Na⁺或Cl⁻依赖性电流,也未检测到添加到转运侧的底物的激活作用。外向GAT1电流(“反向”转运模式)需要细胞质侧存在所有三种底物。内向GAT1电流(“正向”转运模式)在名义上没有Cl⁻的情况下,可以被细胞外(移液管)侧的GABA和Na⁺部分激活。当膜两侧都存在所有三种底物时,用特异性GAT1抑制剂定义的反转电位与提出的1GABA:2Na⁺:1Cl⁻化学计量一致。正如“交替访问”模型所预测的那样,在转运侧添加一种底物(120 mM细胞外Na⁺)会降低顺侧(细胞质GABA)底物激活电流的半数最大浓度。在存在细胞外Na⁺的情况下,通过降低细胞质Cl⁻,细胞质GABA的半数最大浓度会增加。在没有细胞外Na⁺的情况下,当共底物浓度降低时,半数最大细胞质底物浓度(8 mM Cl⁻、2 mM GABA、60 mM Na⁺)不会改变,但降低细胞质Cl⁻会增加细胞质Na⁺的半数最大浓度。正向GAT1电流(即存在所有细胞外底物时的内向电流)受到细胞质Cl⁻(Ki,8 mM)的单调抑制;在没有细胞质Cl⁻的情况下,细胞质Na⁺和细胞质GABA没有影响。在没有细胞外Na⁺的情况下,反向转运电流(即存在所有细胞质底物时的外向电流)的电流-电压关系可以用浅指数函数近似,其斜率与移动0.15 - 0.3当量电荷的限速步骤一致。当通过降低每种共底物浓度使电流降低四至八倍时,电流-电压关系的斜率变化很小;当向细胞外(移液管)侧添加100 mM Na⁺时,斜率增加两倍。