Rossner Moritz J, Hirrlinger Johannes, Wichert Sven P, Boehm Christine, Newrzella Dieter, Hiemisch Holger, Eisenhardt Gisela, Stuenkel Carolin, von Ahsen Oliver, Nave Klaus-Armin
Max-Planck-Institute of Experimental Medicine, 37075 Göttingen, Germany.
J Neurosci. 2006 Sep 27;26(39):9956-66. doi: 10.1523/JNEUROSCI.0468-06.2006.
The enormous cellular complexity of the brain is a major obstacle for gene expression profiling of neurological disease models, because physiologically relevant changes of transcription in a specific neuronal subset are likely to be lost in the presence of other neurons and glia. We solved this problem in transgenic mice by labeling genetically defined cells with a nuclear variant of GFP. When combined with laser-directed microdissection, intact RNA from unfixed, freeze-dried sections can be isolated, which is a prerequisite for high-quality global transcriptome analysis. Here, we compared gene expression profiles between pyramidal motor neurons and pyramidal somatosensory neurons captured from layer V of the adult neocortex. One striking feature of motor neurons is the elevated expression of ribosomal genes and genes involved in ATP synthesis. This suggests a molecular adaptation of the upper motor neurons to longer axonal projections and higher electrical activity. These molecular signatures were not detected when cortical layers and microareas were analyzed in toto. Additionally, we used microarrays to determine the global mRNA expression profiles of microdissected Purkinje cells and cellularly complex cerebellar cortex microregions. In summary, our analysis shows that cellularly complex targets lead to averaged gene expression profiles that lack substantial amounts of cell type-specific information. Thus, cell type-restricted sampling strategies are mandatory in the CNS. The combined use of a genetic label with laser-microdissection offers an unbiased approach to map patterns of gene expression onto practically any cell type of the brain.
大脑极其复杂的细胞构成是神经疾病模型基因表达谱分析的主要障碍,因为在存在其他神经元和神经胶质细胞的情况下,特定神经元亚群中转录的生理相关变化可能会丢失。我们通过用绿色荧光蛋白(GFP)的核变体标记转基因小鼠中基因定义的细胞,解决了这个问题。当与激光导向显微切割相结合时,可以从未固定、冻干的切片中分离出完整的RNA,这是高质量全转录组分析的先决条件。在这里,我们比较了从成年新皮层第V层捕获的锥体运动神经元和锥体感觉神经元之间的基因表达谱。运动神经元的一个显著特征是核糖体基因和参与ATP合成的基因表达升高。这表明上运动神经元在分子水平上适应了更长的轴突投射和更高的电活动。当对皮质层和微区进行整体分析时,未检测到这些分子特征。此外,我们使用微阵列来确定显微切割的浦肯野细胞和细胞组成复杂的小脑皮质微区的全局mRNA表达谱。总之,我们的分析表明,细胞组成复杂的靶点会导致平均基因表达谱,而这些谱缺乏大量的细胞类型特异性信息。因此,在中枢神经系统中,细胞类型受限的采样策略是必不可少的。将基因标记与激光显微切割结合使用,为将基因表达模式映射到大脑几乎任何细胞类型上提供了一种无偏倚的方法。