Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065.
Genomics Resources Core Facility, Weill Cornell Medicine, New York, NY 10065.
Proc Natl Acad Sci U S A. 2023 Apr 18;120(16):e2205786120. doi: 10.1073/pnas.2205786120. Epub 2023 Apr 14.
Stroke-induced cerebral microvascular dysfunction contributes to aggravation of neuronal injury and compromises the efficacy of current reperfusion therapies. Understanding the molecular alterations in cerebral microvessels in stroke will provide original opportunities for scientific investigation of novel therapeutic strategies. Toward this goal, using a recently optimized method which minimizes cell activation and preserves endothelial cell interactions and RNA integrity, we conducted a genome-wide transcriptomic analysis of cerebral microvessels in a mouse model of stroke and compared these transcriptomic alterations with the ones observed in human, nonfatal, brain stroke lesions. Results from these unbiased comparative analyses have revealed the common alterations in mouse stroke microvessels and human stroke lesions and identified shared molecular features associated with vascular disease (e.g., Serpine1/Plasminogen Activator Inhibitor-1, Hemoxygenase-1), endothelial activation (e.g., Angiopoietin-2), and alterations in sphingolipid metabolism and signaling (e.g., Sphigosine-1-Phosphate Receptor 2). Sphingolipid profiling of mouse cerebral microvessels validated the transcript data and revealed the enrichment of sphingomyelin and sphingoid species in the cerebral microvasculature compared to brain and the stroke-induced increase in ceramide species. In summary, our study has identified novel molecular alterations in several microvessel-enriched, translationally relevant, and druggable targets, which are potent modulators of endothelial function. Our comparative analyses have revealed the presence of molecular features associated with cerebral microvascular dysfunction in human chronic stroke lesions. The results shared here provide a detailed resource for therapeutic discovery of candidates for neurovascular protection in stroke and potentially, other pathologies exhibiting cerebral microvascular dysfunction.
卒中引起的脑微血管功能障碍导致神经元损伤加重,并影响当前再灌注治疗的效果。了解卒中后脑微血管的分子变化将为新的治疗策略的科学研究提供新的机会。为此,我们使用最近优化的方法,最大限度地减少细胞激活并保留内皮细胞相互作用和 RNA 完整性,对卒中小鼠模型中的脑微血管进行了全基因组转录组分析,并将这些转录组变化与人类非致命性脑卒中风病变进行了比较。这些无偏比较分析的结果揭示了小鼠卒中微血管和人类卒中病变中的常见变化,并确定了与血管疾病相关的共同分子特征(例如,Serpine1/纤溶酶原激活物抑制剂-1、血红素加氧酶-1)、内皮细胞激活(例如,血管生成素-2)以及鞘脂代谢和信号的改变(例如,鞘氨醇-1-磷酸受体 2)。对小鼠脑微血管的鞘脂谱分析验证了转录数据,并显示与脑相比,脑微血管中鞘磷脂和鞘脂种类更为丰富,卒中引起的神经酰胺种类增加。总之,我们的研究在几个富含微血管的、具有翻译相关性的、可药物治疗的靶点中确定了新的分子变化,这些靶点是内皮功能的有效调节剂。我们的比较分析揭示了人类慢性卒中病变中存在与脑微血管功能障碍相关的分子特征。这里共享的结果为卒中神经血管保护候选药物的治疗发现提供了详细的资源,并且可能为其他表现出脑微血管功能障碍的病理学提供资源。